作业帮 > 数学 > 作业

用洛必达法则求limx→0(1/x^2-cot^2x)的详细步骤

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:15:40
用洛必达法则求limx→0(1/x^2-cot^2x)的详细步骤
limx→0(1/x^2-cot^2x)
=limx→0(1/x^2-sin^2x/cos^2x)
=limx→0[(sin^2x-x^2cos^2x)/x^2sin^2x]
=limx→0[(sin^2x-x^2)/x^2sin^2x]
=limx→0[(2sinxcosx-2x)/(2xsin^2x+2x^2sinxcosx)]
=limx→0[(2sinx-2x)/(2xsin^2x+2x^2sinx)]
=limx→0[(2cosx-2)/(2sin^2x+4xsinxcosx+2x^2cosx+4xsinx)]
=limx→0[(2cosx-2)/(2sin^2x+4xsinx+2x^2+4xsinx)]
=limx→0[-2sinx/(4sinxcosx+4sinx+4xcosx+4x+4sinx+4xcosx)]
=limx→0[-2sinx/(12sinx+12x)]
=limx→0[-2cosx/(12cosx+12)]
=-1/12