设样本观测值x1,x2,x3…xn,为了估计总体ξ的方差,我们利用下面的公式ỡ的平方=k∑(xi+1-xi)
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/07 16:56:36
设样本观测值x1,x2,x3…xn,为了估计总体ξ的方差,我们利用下面的公式ỡ的平方=k∑(xi+1-xi)*(xi+1-xi),求k的值,使ỡ的平方使总体方差的无偏估计值,其中x1,x2,x3,xi,xn是x的下标,(xi+1-xi)*(xi+1-xi)是(xi+1-xi)的平方的意思,k∑(xi+1-xi)*(xi+1-xi)中∑的上面是n-1,下面是i=1
这个题应该还有一个条件,就是个样本观察值相互独立吧!
依题意,有E[ỡ]=σ,令E[Xi]=m,则
E[Xi^2]=D[Xi]+E[Xi]^2=σ^2+m^2
所以,
E[ỡ]=E[k∑(xi+1-xi)*(xi+1-xi)]
=kE{∑[(Xi+1)^2+Xi^2-2(Xi+1)*Xi]}
=k∑E[(Xi+1)^2+Xi^2-2(Xi+1)*Xi]
=k∑(σ^2+m^2+σ^2+m^2-2m*m)
=k∑(2*σ^2)
=2k*(n-1)σ^2
因此有σ^2=2k*(n-1)σ^2,解得:
k=1/[2(n-1)]
依题意,有E[ỡ]=σ,令E[Xi]=m,则
E[Xi^2]=D[Xi]+E[Xi]^2=σ^2+m^2
所以,
E[ỡ]=E[k∑(xi+1-xi)*(xi+1-xi)]
=kE{∑[(Xi+1)^2+Xi^2-2(Xi+1)*Xi]}
=k∑E[(Xi+1)^2+Xi^2-2(Xi+1)*Xi]
=k∑(σ^2+m^2+σ^2+m^2-2m*m)
=k∑(2*σ^2)
=2k*(n-1)σ^2
因此有σ^2=2k*(n-1)σ^2,解得:
k=1/[2(n-1)]
设样本观测值x1,x2,x3…xn,为了估计总体ξ的方差,我们利用下面的公式ỡ的平方=k∑(xi+1-xi)
设X1.X2.Xn是来自正态总体N(3,4)的样本,则1/4倍的Xi-3的平方求和服从的分布为?
从总体X中抽取样本(x1,x2,……,xn),试证:∑从i=1到n,xi-C的平方在C=x的均值 时达到最小
设X1,X2.Xn(n>2)为来自总体N(0,a^2)的样本,记Yi=Xi-X的均值,
设X1 X2…… Xn是来自总体的一个样本 求样本均值 样本方差
概率论依概率收敛问题设总体X~π(2),X1,X2.Xn是来自总体X的样本,则当n→∞时,1/n ∑Xi^2依
多次测量平均值的公式测量值是x1,x2,x3……xn,1,2,3,n都是下标,谁能解释下公式,Σ下面的i=1和xi是什么
设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要
设X1,X2,……Xn是总体X的样本,总体方差存在,X拔是样本均值,求X1与X拔的相关系数
如果样本X1+1,X2+1,X3+1,…Xn+1的平均数是9,方差为3,那么样本X1+2,X2+2,X3+2,…,Xn+
设X1,X2……Xn是总体X的一个样本,如果总体的数学期望和方差都存在,即E(X)=μ,求
设总体X~N(μ,σ2),X1…… X2n 是总体X的一个样本 令Y=∑(Xi+Xn+i-2Y)² 求EY