设n阶矩阵a可逆,则对任意的n*m矩阵B,有R(AB)=R(B) 这个对不
设n阶矩阵a可逆,则对任意的n*m矩阵B,有R(AB)=R(B) 这个对不
设m*n矩阵A,m阶可逆矩阵P及n阶可逆矩阵Q,矩阵B=PAQ,证明:r(A)=r(B)
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( )
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为 r1,矩阵B=AC的秩为r,则
设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是
1、设A为m×n 矩阵,C是n 阶可逆矩阵,矩阵A的秩为 r,则矩阵B=AC的秩为_________.这个答案是多少呢?
(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).
设A为m×n矩阵,C是n阶可逆矩阵,A的秩为r1,B=AC的秩为r,则( ) A.r>r1 B.r=r1 C.r
设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
设A是m*n矩阵,B是n*m矩阵,证明:若r(A)=n,则r(AB)=r(B).
设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)