x=f'(t).y=tf'(t)-f(t),设f"(t)存在且不等于零,求二阶导数
x=f'(t).y=tf'(t)-f(t),设f"(t)存在且不等于零,求二阶导数
x=f'(t) y=tf'(t)-f(t)的三阶导数?
求参数方程导数x=f'(t),y=tf'(t)-f(t)
设f(t)是二次可微函数且f''(t)不等于0 x=f'(t),y=tf'(t)-f(t),求dy/dx,d^2y/dx
设F(x)=∫tf(t)dt/x^2,(x不等于0),a,(x=0)其中f(x)有连续导数,且f(0)=3,f'(0)=
设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x)
设y=f(x,t)而t=t(x,y)是方程F(x,y,t)=0确定的隐函数,f、F均有一阶连续偏导数且F't+F'yf'
一道导数的题目,x=f '(t)y=tf '(t)-f(t)dy/dx=tf''(t)/f"(t)=t为什么dy/dx的
一道考研数学求导题,x=f'(t),y=t*f'(t)-f(t).f''(t)存在不为零,求2阶导数.我就不明白一阶导数
设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)
f(x)在【0,a】上连续可导,且f(a)=0.证明:存在一点t属于(0,a),使f(t)+tf'(t)=0
设ln f(t)=cost,则∫[tf'(t)]/f(t)dt=