数学归纳法的证明题用数学归纳法证明:1 sin x+2 sin 2x+…+n sin nx=sin[(n+1)x]/4s
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:42:28
数学归纳法的证明题
用数学归纳法证明:1 sin x+2 sin 2x+…+n sin nx=sin[(n+1)x]/4sin^2(x/2)-(n+1)cos{[(2n+1)/2]x}/2sin(x/2)
其中sin(x/2)≠0
用数学归纳法证明:1 sin x+2 sin 2x+…+n sin nx=sin[(n+1)x]/4sin^2(x/2)-(n+1)cos{[(2n+1)/2]x}/2sin(x/2)
其中sin(x/2)≠0
前面步骤省略
设:1sin(x)+2sin(2x)+…+nsin(nx)=sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]
则需要sin[(n+2)x]/[4sin^2(x/2)]-(n+2)cos[(2n+3)x/2]/[2sin(x/2)]
=sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]+(n+1)sin[(n+1)x]
则需要sin[(n+2)x]-(n+2)cos[(2n+3)x/2][2sin(x/2)]
=sin[(n+1)x]-(n+1)cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要sin[(n+2)x]-(n+2)cos[(2n+3)x/2][2sin(x/2)]
=sin[(n+1)x]-(n+2)cos[(2n+1)x/2][2sin(x/2)]+cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要sin[(n+2)x]-sin[(n+1)x]+(n+2)cos[(2n+1)x/2][2sin(x/2)]-(n+2)cos[(2n+3)x/2][2sin(x/2)]
=cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要sin[(n+2)x]-sin[(n+1)x]+(n+2)[2sin(x/2)]{cos[(2n+1)x/2]-cos[(2n+3)x/2]}
=cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要2cos[(2n+3)x/2]sin(x/2)+(n+2)[2sin(x/2)][2sin[(n+1)x]sin(x/2)]
=cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]
={cos[(2n+1)x/2]-cos[(2n+3)x/2]}[2sin(x/2)]
则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]
=2sin[(n+1)x]sin(x/2)[2sin(x/2)]
则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]
=sin[(n+1)x][4sin^2(x/2)]
很明显,上式是左右相等的
所以问题得证.
需要用到的三角函数:
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2],则sin[(n+2)x]-sin[(n+1)x]=2cos[(2n+3)x/2]sin(x/2)
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2],则cos[(2n+1)x/2]-cos[(2n+3)x/2]=2sin[(n+1)x]sin(x/2)
设:1sin(x)+2sin(2x)+…+nsin(nx)=sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]
则需要sin[(n+2)x]/[4sin^2(x/2)]-(n+2)cos[(2n+3)x/2]/[2sin(x/2)]
=sin[(n+1)x]/[4sin^2(x/2)]-(n+1)cos[(2n+1)x/2]/[2sin(x/2)]+(n+1)sin[(n+1)x]
则需要sin[(n+2)x]-(n+2)cos[(2n+3)x/2][2sin(x/2)]
=sin[(n+1)x]-(n+1)cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要sin[(n+2)x]-(n+2)cos[(2n+3)x/2][2sin(x/2)]
=sin[(n+1)x]-(n+2)cos[(2n+1)x/2][2sin(x/2)]+cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要sin[(n+2)x]-sin[(n+1)x]+(n+2)cos[(2n+1)x/2][2sin(x/2)]-(n+2)cos[(2n+3)x/2][2sin(x/2)]
=cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要sin[(n+2)x]-sin[(n+1)x]+(n+2)[2sin(x/2)]{cos[(2n+1)x/2]-cos[(2n+3)x/2]}
=cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要2cos[(2n+3)x/2]sin(x/2)+(n+2)[2sin(x/2)][2sin[(n+1)x]sin(x/2)]
=cos[(2n+1)x/2][2sin(x/2)]+(n+1)sin[(n+1)x][4sin^2(x/2)]
则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]
={cos[(2n+1)x/2]-cos[(2n+3)x/2]}[2sin(x/2)]
则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]
=2sin[(n+1)x]sin(x/2)[2sin(x/2)]
则需要(n+2)[sin[(n+1)x][4sin^2(x/2)]-(n+1)sin[(n+1)x][4sin^2(x/2)]
=sin[(n+1)x][4sin^2(x/2)]
很明显,上式是左右相等的
所以问题得证.
需要用到的三角函数:
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2],则sin[(n+2)x]-sin[(n+1)x]=2cos[(2n+3)x/2]sin(x/2)
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2],则cos[(2n+1)x/2]-cos[(2n+3)x/2]=2sin[(n+1)x]sin(x/2)
数学归纳法的证明题用数学归纳法证明:1 sin x+2 sin 2x+…+n sin nx=sin[(n+1)x]/4s
用数学归纳法证明:sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/
用数学归纳法证明 │sin nx│≤n│sin x│ ,n属于N
请用数学归纳法证明对任意正整数n有|sin(nx)|=n|sinx|
用数学归纳法证明:cos(x/2)×cos(x/2^2)×...×cos(x/2^n)=sinx/[2^n×sin(x/
证明:|sin nx|《n|sin x|
用数学归纳法证明,1-x/1!+x(x-1)/2!+...+(-1)^nx(x-1)...(x-n
对任何自然数,x^n-nx+(n-1)能被(x-1)^2整除,用数学归纳法证明这个命题
用数学归纳法证明:1-x/1!+x(x-1)/2!+...+(-1)^nx(x-1)...(x-n+1)/n!=(-1)
用数学归纳法证明(1-x)(1+x+x^2+……+x^(n-1))=1-x^n
用数学归纳法证明:当x>-1,n∈N+时,(1+x)n≥1+nx.
用数学归纳法证明(1-x)(1+x+x^2+...+x^n-1)=1-x^n