线性代数,AB=O (A、B 为两个矩阵)则可以推出什么结论?
线性代数,AB=O (A、B 为两个矩阵)则可以推出什么结论?
问一个线性代数问题:已知两个三阶非0矩阵A、B,则由AB=0,为什么可以推出r(A)+r(B)≤3
线性代数选择题1.设A与B均为n阶矩阵,则下列结论中正确的是( ).(A)若|AB|=0,则A=O或B=O; (B)若|
线性代数两个定理证明证明这两个定理:1,设A为mXn矩阵,B为nXp矩阵,若AB=O,则秩A+秩B=2),则A的伴随阵的
线性代数问题1假设矩阵A为m*n矩阵,B 为n阶矩阵.已知r(A)=n,证明(1)若AB=O则B=O(2)若AB=A则B
设A B 均为n阶矩阵,且AB=O(零矩阵),则|A|和|B|都等于零.为什么啊 怎么推出来的
线性代数——矩阵设矩阵A为m×n矩阵,B为n阶矩阵.已知r(A)=n,试证:(1)若AB=O,则B=O(2)若AB=A,
两个非零矩阵A ,B,如果AB=0,是否能推出A或B的行列式为零
线性代数一题设A是m×n阶矩阵,C是n的可逆矩阵,矩阵A的秩为r,矩阵B=ACC的秩为t,则下列结论正确的是() A:>
线性代数 可逆矩阵 比如说A和B都是n阶可逆矩阵 一般可以得到什么结论?
线性代数,A,B两个矩阵.则下图符号什么意思
一个线代问题如果一直3阶矩阵A、B,满足AB=B,是不是可以推出来A可逆呢?已知B为非零矩阵