已知a∈R,函数f(x)=ax+lnx−1,g(x)=(lnx−1)ex +x(其中e为自然对数的底).
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 21:46:42
已知a∈R,函数f(x)=
+lnx−1,g(x)=(lnx−1)
+x
a |
x |
e | x |
(1)∵f(x)=
a
x+x+lnx−1∴f′(x)=−
a
x2+
1
x=
x−a
x2,令f′(x)=0得,x=a,
①若0<a<e,当x∈(0,a)时,f′(x)<0,函数f(x)在区间(0,a)上单调递减,当x∈(a,e)时,f′(x)>0,函数f(x)在区间(a,e)上单调递增,
所以当x=a时,函数f(x)在区间(0,e]上取得最小值lna.
②若a≥e,则f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)在区间(0,e]上取得最小值
a
e.;
综上所述,当0<a<e时,函数f(x)在区间(0,e]上取得最小值lna,当a≥e时,函数f(x)在区间(0,e]上取得最小值
a
e.;
(2)不存在.证明如下
g(x)=(lnx−1)
ex +x,x∈(0,e],
∴g′(x)=
1
x•ex+(lnx-1)ex+1=(
1
x+lnx-1)ex+1
由(1)知,当a=1时,f(x)=
1
x+lnx−1,此时f(x)在区间(0,e]上取得最小值ln1=0,即
1
x+lnx−1≥0,而ex>0,所以g′(x)≥1>0,
又曲线y=g(x)在点x=x0处的切线与y轴垂直,等价于g′(x0)=0有实数根,而g′(x)>0,所以方程g′(x0)=0无实数根,
故不存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
a
x+x+lnx−1∴f′(x)=−
a
x2+
1
x=
x−a
x2,令f′(x)=0得,x=a,
①若0<a<e,当x∈(0,a)时,f′(x)<0,函数f(x)在区间(0,a)上单调递减,当x∈(a,e)时,f′(x)>0,函数f(x)在区间(a,e)上单调递增,
所以当x=a时,函数f(x)在区间(0,e]上取得最小值lna.
②若a≥e,则f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)在区间(0,e]上取得最小值
a
e.;
综上所述,当0<a<e时,函数f(x)在区间(0,e]上取得最小值lna,当a≥e时,函数f(x)在区间(0,e]上取得最小值
a
e.;
(2)不存在.证明如下
g(x)=(lnx−1)
ex +x,x∈(0,e],
∴g′(x)=
1
x•ex+(lnx-1)ex+1=(
1
x+lnx-1)ex+1
由(1)知,当a=1时,f(x)=
1
x+lnx−1,此时f(x)在区间(0,e]上取得最小值ln1=0,即
1
x+lnx−1≥0,而ex>0,所以g′(x)≥1>0,
又曲线y=g(x)在点x=x0处的切线与y轴垂直,等价于g′(x0)=0有实数根,而g′(x)>0,所以方程g′(x0)=0无实数根,
故不存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
已知a∈R,函数f(x)=ax+lnx−1,g(x)=(lnx−1)ex +x(其中e为自然对数的底).
(2012•河南模拟)已知a∈R,函数f(x)=ax+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底
已知a∈R,函数f(x)=ax+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(2014•汕尾二模)已知函数f(x)=1x+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知a∈R,函数f(x)=ax+lnx−1,g(x)=(lnx−1)ex+x
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=xlnx-2x(其中e为自然对数的底数).
(2014•青岛二模)已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.
已知a属于R,函数f(x)=x分之a+lnx-1,g(x=(lnx-1)e的x次方+x(其中为自然对数的底数)求函数f(
(2014•石家庄二模)已知函数f(x)=ex-ax-1(a∈R),其中e为自然对数的底数.
已知函数f(x)=ax-lnx. ,g(x)=lnx/x,定义域是(0,e],e是自然对数的底数,a属于R