数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 19:29:24
数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.
(1)证明:∵a1=S1,an+Sn=n,∴a1+S1=1,得a1=
1
2.
又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即
an+1−1
an−1=
1
2,
也即
cn+1
cn=
1
2,故数列{cn}是等比数列.
(2)∵c1=a1-1=-
1
2,
∴cn=-
1
2n,an=cn+1=1-
1
2n,an-1=1-
1
2n−1.
故当n≥2时,bn=an-an-1=
1
2n−1-
1
2n=
1
2n.
又b1=a1=
1
2,即bn=
1
2n(n∈N*).
1
2.
又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即
an+1−1
an−1=
1
2,
也即
cn+1
cn=
1
2,故数列{cn}是等比数列.
(2)∵c1=a1-1=-
1
2,
∴cn=-
1
2n,an=cn+1=1-
1
2n,an-1=1-
1
2n−1.
故当n≥2时,bn=an-an-1=
1
2n−1-
1
2n=
1
2n.
又b1=a1=
1
2,即bn=
1
2n(n∈N*).
数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
数列an前n项和sn,数列bn中b1=a1,bn=an-a(n-1)(n>=2),若an+sn=n(1)设cn=an-1
已知数列an bn其中a1=1/2数列an的前n项和Sn=n^2an(n≥1) 数列bn满足b1=2 bn+1=2bn
高二关于等比数列的题数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-a(n-1)(n>=2)且an
数列an前n项和为sn,a1=1,数列bn首项b1=2,且sn+n^2=n(an+1),bn=abn-1求an,bn的通
已知数列{an}的前n项和sn=n2,数列{bn}中b1=2,bn=2bn-1(n≥2)
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
已知数列an的通项为an,前n项和为Sn,且an是Sn与2的等差中项;数列bn中,b1=1,点P(bn,bn+1)在直线
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn
数列{an}的前n项和Sn=2an-1(n≥1),数列{bn}满足b1=3,b(n+1)=an+bn,求数列{bn}的前