作业帮 > 数学 > 作业

一道关于矩阵的证明题设A为可逆矩阵,且A的元素全为整数,证明:A的逆矩阵中所有元素也全为整数的充要条件是|A|=+1或-

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 15:37:34
一道关于矩阵的证明题
设A为可逆矩阵,且A的元素全为整数,证明:A的逆矩阵中所有元素也全为整数的充要条件是|A|=+1或-1.
若A的逆矩阵中所有元素全为整数,则|A逆| 为整数,又A的元素全为整数,故|A| 为整数,因为|A| *|A逆|=1,所以|A|=+1或-1.
反过来,若|A|=+1或-1,因为A的元素全为整数,所以A*的所有元素为整数,由A逆=A*/|A| 得A逆的所有元素也为整数.