作业帮 > 数学 > 作业

如图,CF、BE是△ABC的高,且BP=AC,CQ=AB.(1)线段AP与AQ有什么样的关系?说明理由.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:56:41
如图,CF、BE是△ABC的高,且BP=AC,CQ=AB.(1)线段AP与AQ有什么样的关系?说明理由.
(1)线段AP与AQ有什么样的关系?说明理由.
(2)题中的△ABC改为钝角三角形.其他条件不变,上述结论还正确吗?请画图并证明你的结论

证明:(1)
∵BE、CF是高,
∴ ∠CFB=∠CEB=90
∴ ∠FBP+ ∠PBC+∠PCB=∠ECB+∠PCB+∠PBC=90 即 ∠FBP=∠ECB
在△ABP和△ACQ中,∠FBP=∠ECB,BP=AC,CQ=AB
∴ △ABP≌△ACQ
∴ AQ=AP
(2)
结论不便,证法完全一样,只是P点在三角形A点外部,E,F分别在AB,AC延长线上