作业帮 > 数学 > 作业

已知函数f(x)=(1+1/tanx)sin2x-2sin(x+π/4)sin(x-π/4)

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:22:59
已知函数f(x)=(1+1/tanx)sin2x-2sin(x+π/4)sin(x-π/4)
1.若tanx=2,求f(a) 2.若x∈[π/12,π/2],求f(x)的取值范围
将函数f(X)=(1+1/tanx)sin^2x+msin(x+π/4)sin(x-π/4) 化简得:=(1+cosx/sinx)*2sinxcosx+m(sinxcosπ/4+cosxsinπ/4)(sinxcosπ/4-cosxsinπ/4) =2sinxcosx+2(cosx)^2+1/2[(sinx)^2-(cosx)^2]m 由tana=2得 sina=2cosa 所以:f(a)=(sina)^2+2(cosa)^2+1/2*3m(cosa)^2 =1+(cosa)^2+3m/2*(cosa)^2 =3/5 所以得:3m/2*(cosa)^2+2/5[(cosa)^2+(sina)^2]+(cosa)^2=0 3m/2*(cosa)^2+7/5*(cosa)^2+2/5*(sina)^2=0 因为tana=2 将上式同除于(cosa)^2得((cosa)^2由tana=2知不会为零):3m/2+7/5+2/5*4=0 所以:m=-2