已知数列{an}的前n项和为Sn,满足Sn=2an+n2-4n(n=1,2,3,…).
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 02:46:57
已知数列{an}的前n项和为Sn,满足Sn=2an+n2-4n(n=1,2,3,…).
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn.
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn.
(Ⅰ)由Sn=2an+n2-4n,
当n=1时,a1=2a1+1-4,可得a1=3.an+1=Sn+1-Sn=2an+1+(n+1)2-4(n+1)-2an-n2+4n,
可得an+1=2an-2n+3.
可得a2=7,a3=13.
(Ⅱ)由an+1=2an-2n+3可得,
an+1−2(n+1)+1
an−2n+1=
2an−2n+3−2(n+1)+1
an−2n+1=
2an−4n+2
an−2n+1=2.
又a1-2×1+1=2.
所以数列{an-2n+1}是首项为2,公比为2的等比数列.
(Ⅲ)由(Ⅱ)可得,an-2n+1=2n.
所以an=2n-1+2n.
又Sn=2an+n2-4n,
可得Sn=2n+1+n2-2.
当n=1时,a1=2a1+1-4,可得a1=3.an+1=Sn+1-Sn=2an+1+(n+1)2-4(n+1)-2an-n2+4n,
可得an+1=2an-2n+3.
可得a2=7,a3=13.
(Ⅱ)由an+1=2an-2n+3可得,
an+1−2(n+1)+1
an−2n+1=
2an−2n+3−2(n+1)+1
an−2n+1=
2an−4n+2
an−2n+1=2.
又a1-2×1+1=2.
所以数列{an-2n+1}是首项为2,公比为2的等比数列.
(Ⅲ)由(Ⅱ)可得,an-2n+1=2n.
所以an=2n-1+2n.
又Sn=2an+n2-4n,
可得Sn=2n+1+n2-2.
已知数列{an}的前n项和为Sn,满足Sn=2an+n2-4n(n=1,2,3,…).
已知数列{an}的前n项和为Sn,通项an满足Sn+an=1/2(n2+3n-2),求通项公式an.
设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
已知数列{an}满足a1=0,an+1+Sn=n2+2n(n∈N*),其中Sn为{an}的前n项和,则此数列的通项公式为
已知数列{an}的前n项和,Sn=n2+2n+1.
已知数列an前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)^2an(n属于正整数) 求an
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,满足an+Sn=2n.
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
数列{an}的前n项和Sn满足:Sn=2an-3n(n属于N*)