∫(x^4-4x^2+5x-15)/(x^2+1)(x-2) dx=?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:00:50
∫(x^4-4x^2+5x-15)/(x^2+1)(x-2) dx=?
把式子因数化,变成(?)/(x^2+1)+(?)/(x-2)步,带骤,
把式子因数化,变成(?)/(x^2+1)+(?)/(x-2)步,带骤,
∵(x^4-4x^2+5x-15)/[(x^2+1)(x-2)]
=[(x^4+x²-5x²-5)+(5x-10)]/[(x²+1)(x-2)]
=[x²(x²+1)-5(x²+1)+5(x-2)]/[(x²+1)(x-2)]
=[(x²+1)(x²-5)+5(x-2)]/[(x²+1)(x-2)]
=(x²-5)/(x-2)+5/(x²+1)
=[(x²-2x)+(2x-4)-1]/(x-2)+5/(x²+1)
=[x(x-2)+2(x-2)-1]/(x-2)+5/(x²+1)
=x+2-1/(x-2)+5/(x²+1)
∴∫(x^4-4x^2+5x-15)/(x^2+1)(x-2)dx
=∫[x+2-1/(x-2)+5/(x²+1)]dx
=x²/2+2x-ln|x-2|+5arctanx+C,(C是积分常数).
=[(x^4+x²-5x²-5)+(5x-10)]/[(x²+1)(x-2)]
=[x²(x²+1)-5(x²+1)+5(x-2)]/[(x²+1)(x-2)]
=[(x²+1)(x²-5)+5(x-2)]/[(x²+1)(x-2)]
=(x²-5)/(x-2)+5/(x²+1)
=[(x²-2x)+(2x-4)-1]/(x-2)+5/(x²+1)
=[x(x-2)+2(x-2)-1]/(x-2)+5/(x²+1)
=x+2-1/(x-2)+5/(x²+1)
∴∫(x^4-4x^2+5x-15)/(x^2+1)(x-2)dx
=∫[x+2-1/(x-2)+5/(x²+1)]dx
=x²/2+2x-ln|x-2|+5arctanx+C,(C是积分常数).
∫(x^4-4x^2+5x-15)/(x^2+1)(x-2) dx=?
∫ [(x^3-2x^2+x+1)/(x^4+5x^2+4)]dx
∫(x^2+1/x^4)dx
∫1/(x^4-x^2)dx
∫2^x*3^x/(9^x-4^x) dx
∫((x+2)/4x(x^2-1))dx
积分∫x/[(x^2+1)(x^2+4)]dx
∫(3x^4+x^2)/(x^2+1)dx
∫(x-4x^2+4x^3) (1-x^2)^(1/2) dx=-4∫x^2 * (1-x^2)^(1/2)dx,其中x
计算 ∫(x^4-2x^3+x^2+1)/x(x-1)² dx
∫dx/根号(4x-x^2)
∫ x/(1+X^2)dx=