作业帮 > 数学 > 作业

已知△ABC中,BC>AB>AC,∠ACB=40°,如果D、E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:37:53
已知△ABC中,BC>AB>AC,∠ACB=40°,如果D、E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.
(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图2,

∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,
∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,
∵∠DCE=∠BEC-∠ADC,
∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2
=∠ACB÷2=40°÷2=20°.
(2)当点D、E在点A的同侧,且点D在D’的位置,E在E′的为时,如图3,
与(1)类似地也可以求得∠D'CE'=∠ACB÷2=20°.
(3)当点D、E在点A的两侧,且E点在E’的位置时,如图4,

∵BE′=BC,∴∠BE'C=(180°-∠CBE')÷2=∠ABC÷2,
∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,
又∵∠DCE'=180°-(∠BE'C+∠ADC),
∴∠DCE'=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2
=90°+∠ACB÷2=90°+40°÷2=110°.
(4)当点D、E在点A的两侧,且点D在D′的位置时,如图5,
∵AD′=AC,
∴∠AD′C=(180°-∠D′AC)÷2=(180°-∠BAC)÷2,
∵BE=BC,
∴∠BEC=(180°-∠ABC)÷2,
∴∠D′CE=(180°-∠ACB)÷2=(180°-40°)÷2=70°,
故∠DCE的度数为20°或110°或70°.