已知△ABC中,BC>AB>AC,∠ACB=40°,如果D、E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:37:53
已知△ABC中,BC>AB>AC,∠ACB=40°,如果D、E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.
(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图2,
∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,
∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,
∵∠DCE=∠BEC-∠ADC,
∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2
=∠ACB÷2=40°÷2=20°.
(2)当点D、E在点A的同侧,且点D在D’的位置,E在E′的为时,如图3,
与(1)类似地也可以求得∠D'CE'=∠ACB÷2=20°.
(3)当点D、E在点A的两侧,且E点在E’的位置时,如图4,
∵BE′=BC,∴∠BE'C=(180°-∠CBE')÷2=∠ABC÷2,
∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,
又∵∠DCE'=180°-(∠BE'C+∠ADC),
∴∠DCE'=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2
=90°+∠ACB÷2=90°+40°÷2=110°.
(4)当点D、E在点A的两侧,且点D在D′的位置时,如图5,
∵AD′=AC,
∴∠AD′C=(180°-∠D′AC)÷2=(180°-∠BAC)÷2,
∵BE=BC,
∴∠BEC=(180°-∠ABC)÷2,
∴∠D′CE=(180°-∠ACB)÷2=(180°-40°)÷2=70°,
故∠DCE的度数为20°或110°或70°.
∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,
∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,
∵∠DCE=∠BEC-∠ADC,
∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2
=∠ACB÷2=40°÷2=20°.
(2)当点D、E在点A的同侧,且点D在D’的位置,E在E′的为时,如图3,
与(1)类似地也可以求得∠D'CE'=∠ACB÷2=20°.
(3)当点D、E在点A的两侧,且E点在E’的位置时,如图4,
∵BE′=BC,∴∠BE'C=(180°-∠CBE')÷2=∠ABC÷2,
∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,
又∵∠DCE'=180°-(∠BE'C+∠ADC),
∴∠DCE'=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2
=90°+∠ACB÷2=90°+40°÷2=110°.
(4)当点D、E在点A的两侧,且点D在D′的位置时,如图5,
∵AD′=AC,
∴∠AD′C=(180°-∠D′AC)÷2=(180°-∠BAC)÷2,
∵BE=BC,
∴∠BEC=(180°-∠ABC)÷2,
∴∠D′CE=(180°-∠ACB)÷2=(180°-40°)÷2=70°,
故∠DCE的度数为20°或110°或70°.
已知△ABC中,BC>AB>AC,∠ACB=40°,如果D、E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的
已知,如图,在△ABC中,∠ACB=90°,D,E是AB上的两点,且AD=AC,BE=BC.求证:∠DCE=45°.[
在RT三角形ABC中,角ACB=90°,D,E是AB上的点,且AD=AC,BE=BC,求角DCE
已知,如图,在△ABC中,∠ACB=90°,D,E是AB上的两点,且AB=AC,BE=BC,求证∠DCE=45°
如图,D,E是Rt△ABC斜边AB上两点,且AD=AC,BE=BC,求∠DCE的度数.准确!
如图,D,E是Rt△ABC斜边AB上两点,且AD=AC,BE=BC,求∠DCE的度数
已知:在△ABC中,角ACB=90°,D,E是AB上的两点,且AD=AC,BE=BC.求证:角DCE=45°
已知:如图,△ABC中,∠ACB=90°,DE在AB上,且AD⊥AC,BE=BC,求∠DCE的度数.
如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点,且AD=AC,BE=BC,求∠DCE
如图,已知:△ABC中,∠C=90°,D、E是AB边上的两点,且AD=AC,BE=BC.求∠DCE的度数.
如图,在直角三角形ABC中,∠ACB=90°,D、E是AB上的点,且AD=AC,BE=BC,求∠DCE的度数
如图,Rt三角形ABC中,角ACB=90度,D,E椒AB上的点,且AD=AC,BE=BC,求角DCE