作业帮 > 综合 > 作业

初三数学题一元二次方程

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/06 09:41:37
初三数学题一元二次方程
如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.
(1)求抛物线的解析式;
(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;
(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.
解(1)把A(3,3.5)、B(4,2)、C(0,2)代入y=ax²+bx+c得①9a+3b+c=3.5②16a+4b+c=2③c=2
解得a=﹣½ b=2 c=2则解析式为y=﹣½x²+2x+2
(2)①当CP∥AB时,过AB的一次函数设为y=kx+b把A(3,3.5)、B(4,2)代入得解析式为
y=﹣3/2x+8,∵CP∥AB ∴解析式的k值相同
设过CP的一次函数为y=﹣3/2x+b把C(0,2)代入得解析式为y=﹣3/2x+2
∴P点坐标为(0,4/3)
但AC≠BP
∴不成立
②当AC∥BP时.
但CP≠AB
∴不成立
综合上述,能使四边形ACPB,P点不存在.