数学几何题,不难如图在Rt△ABC中,∠ABC等于90°,∠C=15°,DE⊥AC于点E,且E是AC边的中点.若AB=4
数学几何题,不难如图在Rt△ABC中,∠ABC等于90°,∠C=15°,DE⊥AC于点E,且E是AC边的中点.若AB=4
一道数学几何证明,如图,△ABC中,∠C=90°,点E是AB的中点,过点E作DE⊥AB交BC于点D,联结AD,AC=8,
如图,在Rt三角形ABC中,∠C=90°,点D是AC上一点,DE垂直AB于点E,且DE=DC
如图,在RT△ABC中,∠C=90°,AC=BC,AB=4倍根号2,点F是AB边的中点,点D,E分别在AC,BC边上,且
如图RT△ABC中,∠C=90°,AC=BC,AB=4倍根号2,点F是AB边的中点,点D,E分别在AC,BC边上,且AD
如图,在Rt△ABC中,∠C=90°,点D是AC的中点,DE⊥AB于E,请证明:BE²=BC²+AE
八上数学几何证明题在等腰Rt△ABC中,角ACB=90°,D为BC的中点,DE⊥AB于点E,过点B作BF‖AC交DE的延
如图,Rt△ABC中,∠ABC=90°,AB=BC=4,以AB为直径作圆O交AC边于点D,E是边BC的中点,连结DE.
如图,在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为E,EF∥DB交CB的延长线于点F,猜想
如图,在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为E,EF∥DB交CB的延长线于点F,猜想
如图,在RT△ABC中,∠ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE
如图,在Rt△ABC中,∠C=90°.D是AB的中点,E,F分别为边BC和边AC上,且DE⊥DF.求证:以AE,EF,B