证明不等式:2/(1/a+1/b)≤√ab≤(a+b)/2≤ √(a 2+ b2)/2 (a,b∈R)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:40:44
证明不等式:2/(1/a+1/b)≤√ab≤(a+b)/2≤ √(a 2+ b2)/2 (a,b∈R)
(a,b∈R+)
(a,b∈R+)
(1)求证:2/(1/a+1/b)≤√ab
2/(1/a+1/b)=2ab/(a+b)
因为a,b∈R+,所以√ab>0
要证明2ab/(a+b)≤√ab
则要证明2√ab/(a+b)≤1
即:2√ab≤(a+b)
因为a-2√ab+b=(√a-√b)^2≥0
所以a+b≥2√ab
即:2√ab≤(a+b)
所以:2/(1/a+1/b)≤√ab
(2)求证:√ab≤(a+b)/2
因为:(a+b)/2-√ab=(a-2√ab+b)/2=[(√a-√b)^2]/2≥0
所以:√ab≤(a+b)/2
(3)求证:(a+b)/2≤ √(a 2+ b2)/2
要证明:(a+b)/2≤ √(a 2+ b2)/2
则需证明(a2+b2+2ab)/4≤(a2+b2)/2
即:a2+b2+2ab≤2(a2+b2)
也即需要证明:2ab≤a2+b2
因为a2+b2-2ab=(a-b)^2≥0
所以2ab≤a2+b2成立
所以:(a+b)/2≤ √(a 2+ b2)/2成立
综上所证:2/(1/a+1/b)≤√ab≤(a+b)/2≤ √(a 2+ b2)/2 (a,b∈R+)成立
2/(1/a+1/b)=2ab/(a+b)
因为a,b∈R+,所以√ab>0
要证明2ab/(a+b)≤√ab
则要证明2√ab/(a+b)≤1
即:2√ab≤(a+b)
因为a-2√ab+b=(√a-√b)^2≥0
所以a+b≥2√ab
即:2√ab≤(a+b)
所以:2/(1/a+1/b)≤√ab
(2)求证:√ab≤(a+b)/2
因为:(a+b)/2-√ab=(a-2√ab+b)/2=[(√a-√b)^2]/2≥0
所以:√ab≤(a+b)/2
(3)求证:(a+b)/2≤ √(a 2+ b2)/2
要证明:(a+b)/2≤ √(a 2+ b2)/2
则需证明(a2+b2+2ab)/4≤(a2+b2)/2
即:a2+b2+2ab≤2(a2+b2)
也即需要证明:2ab≤a2+b2
因为a2+b2-2ab=(a-b)^2≥0
所以2ab≤a2+b2成立
所以:(a+b)/2≤ √(a 2+ b2)/2成立
综上所证:2/(1/a+1/b)≤√ab≤(a+b)/2≤ √(a 2+ b2)/2 (a,b∈R+)成立
证明不等式:2/(1/a+1/b)≤√ab≤(a+b)/2≤ √(a 2+ b2)/2 (a,b∈R)
证明不等式[(a+b)/2]2≤(a2+b2)/2
下列不等式的证明过程正确的是A若ab∈R,则b/a+a/b≥2√(b/a.a/b)=2
高二不等式证明:a、b为实数,证明a^2+b^2+1>ab+a
证明不等式:2/(1/a+1/b)≤根号ab≤(a+b)/2≤根号((a^2+b^2)/2)(a,b属于正实数)
用分析法证明不等式 2/(1/a+1/b)≤√ab
设a,b∈R,a2+b2=2,试用反证法证明:a+b≤2.
高中数学基本不等式a+b>=2√ab证明
数学不等式证明:已知a,b,c属于R,求证a^2+b^2>=ab+a+b-1.
下列不等式证明过程:(1)若a,b∈R,则b/a+a/b≥2√b/a×a/b=2 (2)若x,y是正实数,则lgx+lg
设a、b∈R+,证明b/a^3+a/b^3>=1/a^2+1/b^2 用均值不等式
不等式证明 ab=1 求证a^2+b^2>=2根号2 (a-b)