一道微分中值定理的题已知:f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0,求证:在(0,1
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:51:10
一道微分中值定理的题
已知:f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0,
求证:在(0,1)内至少存在一点ξ,使f'(ξ)=-f(ξ)/ξ
已知:f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0,
求证:在(0,1)内至少存在一点ξ,使f'(ξ)=-f(ξ)/ξ
设G'(ξ)=f'(ξ)*ξ+ f(ξ) ,f(ξ)的原函数为F(ξ)+C
则G(ξ)=f(ξ)*ξ+F(ξ)+C
因为 G(0)=F(ξ)+C G(1)=F(ξ)+C 所以G(0)=G(1)
所以 G(x)满足罗尔定理的条件
故,在( 0,1 ) 存在一点ξ,使 G'(ξ)=0
所以G'(ξ)=f'(ξ)*ξ+ f(ξ) =0,即 f'(ξ)=-f(ξ)/ξ
则G(ξ)=f(ξ)*ξ+F(ξ)+C
因为 G(0)=F(ξ)+C G(1)=F(ξ)+C 所以G(0)=G(1)
所以 G(x)满足罗尔定理的条件
故,在( 0,1 ) 存在一点ξ,使 G'(ξ)=0
所以G'(ξ)=f'(ξ)*ξ+ f(ξ) =0,即 f'(ξ)=-f(ξ)/ξ
一道微分中值定理的题已知:f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0,求证:在(0,1
是一道关于微分中值定理的证明题,设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(
一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2
微分中值定理证明问题已知函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)=1,求证:在(0,1)内至少存在一
求助一道中值定理的题目.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,试证ξf'(ξ)+2f(ξ)=
微分中值定理应用设函数f(x)在区间[0,1]上连续,在(0,1)上可导,且f(1)=0证明:至少存在一点X属于(0,1
高数 微分中值定理设函数f(x)在[0,1]上有三阶导数,且f(0)=0,f(1)=1/2,f'(1/2)=0,求证存在
高数中值定理证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对任意给定的正数a
拉格朗日中值定理 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对任意给定的正数a
高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0
mathematica 验证:拉格朗日微分中值定理对函数f(x)=sin(x)-x-1 在区间[ 0,1 ]上的正确性提
中值定理证明设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g