设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:37:11
设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比
设∠AOC=Φ1,∠BOC=Φ2
由OA+2向量OB+3向量OC=0可知,OA和2倍OB的合向量与3倍OC向量等值反方向
根据平行四边形法则作向量OA,2倍OB的和是向量OC'
在△AOC'中,根据正弦定理
|OA|/sin(PAI-Φ2)=2|OB|/sin(PAI-Φ1)=|OC'|/sin[PAI-(PAI-Φ2)-(PAI-Φ1)]
|OA|/sinΦ2=2|OB|/sinΦ1=-|OC'|/sin(Φ2+Φ1)
|OA|/sinΦ2=|OB|/[(1/2)sinΦ1]=|OC|/[-(1/3)sin(Φ2+Φ1)].①
∴S△ABC:S△AOC=(S△AOB+S△BOC+S△AOC):S△AOC
=[|OA|*|OB|sin(Φ2+Φ1)/2+|OB|*|OC|sinΦ2/2+S△AOC]:(|OA|*|OC|sinΦ1/2)
=|[(|OB|sin(Φ2+Φ1)/2):(|OC|sinΦ1/2)]|+|[(|OB|sinΦ2/2):(|OA|sinΦ1/2)]|+1.②
将①中求得的|OB|:|OC|和|OB|:|OA|代入②中,可求得
S△ABC:S△AOC=|-3/2|+1/2+1,考虑面积比不能是负数,要求绝对值
所以S△ABC:S△AOC的面积比是3:1
由OA+2向量OB+3向量OC=0可知,OA和2倍OB的合向量与3倍OC向量等值反方向
根据平行四边形法则作向量OA,2倍OB的和是向量OC'
在△AOC'中,根据正弦定理
|OA|/sin(PAI-Φ2)=2|OB|/sin(PAI-Φ1)=|OC'|/sin[PAI-(PAI-Φ2)-(PAI-Φ1)]
|OA|/sinΦ2=2|OB|/sinΦ1=-|OC'|/sin(Φ2+Φ1)
|OA|/sinΦ2=|OB|/[(1/2)sinΦ1]=|OC|/[-(1/3)sin(Φ2+Φ1)].①
∴S△ABC:S△AOC=(S△AOB+S△BOC+S△AOC):S△AOC
=[|OA|*|OB|sin(Φ2+Φ1)/2+|OB|*|OC|sinΦ2/2+S△AOC]:(|OA|*|OC|sinΦ1/2)
=|[(|OB|sin(Φ2+Φ1)/2):(|OC|sinΦ1/2)]|+|[(|OB|sinΦ2/2):(|OA|sinΦ1/2)]|+1.②
将①中求得的|OB|:|OC|和|OB|:|OA|代入②中,可求得
S△ABC:S△AOC=|-3/2|+1/2+1,考虑面积比不能是负数,要求绝对值
所以S△ABC:S△AOC的面积比是3:1
设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比.解题过程
设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比
设O是三角形ABC内一点,且满足向量OA+2向量OB+3向量OC=0,求三角形ABC与三角形AOC的面积之比?
已知o为三角形abc内一点,且向量oa+oc+2ob=0向量,则三角形aoc与三角形abc的面积比是多少?
O为三角形ABC所在的平面内一点,且满足向量OA+2向量OB+3向量OC=0,则三角形AOC与三角形BOC的面积之比为2
已知o为三角形ABC所在平面内一点且满足向量oa+2向量ob+3向量oc=零向量,则三角形AOB与三角形AOC的面积比
设O在三角形ABC内部,且有OA向量+2OB向量+3OC向量=0向量,则三角形ABC与三角形AOC的面积之比为____
设O是△ABC内一点,且满足向量OA+2向量OB+3向量OC=0,求△ABC与△AOC的面积之比
平面向量的线性运算O是三角形ABC内一点,满足向量OA+向量OB+向量OC=0,|向量OA|=|向量OB|=|向量OC|
若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的形状
三角形ABC中,O为其中一点,且向量OA加2倍向量OB加三倍向量OC等于向量零求三角形BOC比三角形AOC
设O是三角形ABC内一点,且满足3OC+2OB+OA=0,求△ABC与三角形AOC的面积之比