作业帮 > 数学 > 作业

设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:37:11
设O为三角形ABC内一点,且满足向量OA+两倍的向量OB+三倍的向量OC=0,求三角形ABC与AOC的面积比
设∠AOC=Φ1,∠BOC=Φ2
由OA+2向量OB+3向量OC=0可知,OA和2倍OB的合向量与3倍OC向量等值反方向
根据平行四边形法则作向量OA,2倍OB的和是向量OC'
在△AOC'中,根据正弦定理
|OA|/sin(PAI-Φ2)=2|OB|/sin(PAI-Φ1)=|OC'|/sin[PAI-(PAI-Φ2)-(PAI-Φ1)]
|OA|/sinΦ2=2|OB|/sinΦ1=-|OC'|/sin(Φ2+Φ1)
|OA|/sinΦ2=|OB|/[(1/2)sinΦ1]=|OC|/[-(1/3)sin(Φ2+Φ1)].①
∴S△ABC:S△AOC=(S△AOB+S△BOC+S△AOC):S△AOC
=[|OA|*|OB|sin(Φ2+Φ1)/2+|OB|*|OC|sinΦ2/2+S△AOC]:(|OA|*|OC|sinΦ1/2)
=|[(|OB|sin(Φ2+Φ1)/2):(|OC|sinΦ1/2)]|+|[(|OB|sinΦ2/2):(|OA|sinΦ1/2)]|+1.②
将①中求得的|OB|:|OC|和|OB|:|OA|代入②中,可求得
S△ABC:S△AOC=|-3/2|+1/2+1,考虑面积比不能是负数,要求绝对值
所以S△ABC:S△AOC的面积比是3:1