几何证明题 三角形ABC中 AD⊥BC ,G为AD上任意一点,连接CG并延长交AB与E,连接BG并延长交AC于F,连接E
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 04:34:51
几何证明题
三角形ABC中 AD⊥BC ,G为AD上任意一点,连接CG并延长交AB与E,连接BG并延长交AC于F,连接ED,FD,求证:∠1=∠2
三角形ABC中 AD⊥BC ,G为AD上任意一点,连接CG并延长交AB与E,连接BG并延长交AC于F,连接ED,FD,求证:∠1=∠2
首先简要介绍一个定理,名叫塞瓦定理,内容如下:
在三角形ABC中,直线AD,BE,CF交BC,AC,AB于D,E,F,三条直线交于一点O
则有(AF/FB)*(BD/DC)*(CE/EA)=1
反之也成立.
这个定理的证明,可以用面积法来证.
AF/FB=SAOC/SBOC
BD/DC=SAOB/SAOC
CE/EA=SBOC/SAOB
三个式子相乘,得到了塞瓦定理.
下面进入这道题的证明.
过A作BC的平行线,交DE,DF的延长线于P,Q
所以角PAD=角QAD=90度
只要证明PA=QA,就可以得出角1=角2
因为PQ//BC
所以有
AP/BD=AE/EB………………………………(1)
DC/AQ=CF/FA………………………………(2)
(1)×(2)可得
(AP/AQ)*(DC/BD)=(AE/EB)(CF/FA)
AP/AQ=(AE/EB)*(BD/DC)*(CF/FA)…………(3)
因为AD,CE,BF三线共点
所以根据塞外定理可知,(3)式的右端为1
所以AP=AQ
三角形PAD全等于三角形QAD(SAS)
(备注:或者此处用等腰三角形三线合一来说)
所以角PAD=角QAD
即角1=角2
不知道楼主能不能看懂,这道题应该是竞赛题了.
之前定理的叙述可能有不严谨的地方,如果想要更加深入地了解,建议楼主还是去百科上查一查吧.
在三角形ABC中,直线AD,BE,CF交BC,AC,AB于D,E,F,三条直线交于一点O
则有(AF/FB)*(BD/DC)*(CE/EA)=1
反之也成立.
这个定理的证明,可以用面积法来证.
AF/FB=SAOC/SBOC
BD/DC=SAOB/SAOC
CE/EA=SBOC/SAOB
三个式子相乘,得到了塞瓦定理.
下面进入这道题的证明.
过A作BC的平行线,交DE,DF的延长线于P,Q
所以角PAD=角QAD=90度
只要证明PA=QA,就可以得出角1=角2
因为PQ//BC
所以有
AP/BD=AE/EB………………………………(1)
DC/AQ=CF/FA………………………………(2)
(1)×(2)可得
(AP/AQ)*(DC/BD)=(AE/EB)(CF/FA)
AP/AQ=(AE/EB)*(BD/DC)*(CF/FA)…………(3)
因为AD,CE,BF三线共点
所以根据塞外定理可知,(3)式的右端为1
所以AP=AQ
三角形PAD全等于三角形QAD(SAS)
(备注:或者此处用等腰三角形三线合一来说)
所以角PAD=角QAD
即角1=角2
不知道楼主能不能看懂,这道题应该是竞赛题了.
之前定理的叙述可能有不严谨的地方,如果想要更加深入地了解,建议楼主还是去百科上查一查吧.
几何证明题 三角形ABC中 AD⊥BC ,G为AD上任意一点,连接CG并延长交AB与E,连接BG并延长交AC于F,连接E
如图,AD是△ABC的中线,P为AD上任意一点,连接BP并延长,交AC于F,连接CP并延长,交AB于E,连接EF.求证:
已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)说明AD⊥D
初中正方形几何证明题在正方形ABCD中,E为AB边上任意一点(不与A,B重合),连接CE并延长交AD的延长线于F点,连接
已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.
如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG,并延长交DE于F
初中几何证明题,任取三角形ABC,过A做BC垂线,交BC于D,在AD上任取一点O,连接BO并延长交AC于E,连接CO并延
在三角形ABC中AB=AC,D是BC边上中点E是BA延长线上一点F是AC上一点AE=AF,连接EF并延长交G,AD,EF
初二全等三角形证明题AD为△ABC的高,且AD=BD,F为AD上一点,连接BF并延长交AC于E.CD=FD,求证:BE⊥
如图,在三角形ABC中,AB=ac,在AB上取一点D,在CA的延长线上取一点E,使AE=AD,连接ED并延长交BC于F,
三角形ABC中AB=AC,AC上取一点E,BA的延长线上取点D使AD=AE,连接DE并延长交BC于点F.求证:DF垂直B
△ABC中AB<BC,D在AC上,CD=AB,E、F为AD、BC中点,连接EF并延长与BA的延长线交于G点,求AE=AG