设OM=(1,12),ON=(0,1)为坐标原点,动点p(x,y)满足0≤OP•OM≤1,,则z=y-x的最大值是(
设OM=(1,12),ON=(0,1)为坐标原点,动点p(x,y)满足0≤OP•OM≤1,,则z=y-x的最大值是(
设OM=(1,12),ON=(0,1),O为坐标原点,动点P(x,y)满足0≤OP•OM≤1,0≤OP•ON≤1,则z=
设P为椭圆x^2/4+y^2=1上的任意一点,O为坐标原点,F为椭圆的左焦点,点M满足向量OM=1/29(向量OP+向量
关于轨迹的数学题已知A点坐标为〔0,1〕,P点是关于圆O,X平方+Y平方=4上的动点向量OM=1/2〔向量OA+向量OP
设M是圆x^2+y^2-6x-8y=0上的动点,o是原点,N是射线OM上的点,若|OM|*|ON|=150,求点N的轨迹
设p是椭圆x^2/25+y^2/9=1上的一点动点,F是它的左焦点,且OM=1/2(OP+OF),OM=4,求p到该椭圆
设平面内的向量OA=(1,7),OB=(5,1),OM=(2,1),OP(x,y),点p是直线OM上的一个动点,1:求当
已知O为坐标原点,点M(1,-2),点N(x,y)满足条件(x≥1,x-2y≤1,x-4y+3≥0),则向量OM与向量O
设M是圆x2+y2-6x-8y=0上的动点,O是原点,N是射线OM上的点,若|OM|•|ON|=150,求点N的轨迹方程
设O为坐标原点,M是L:x=2上的点,F(1,0),过点F作OM的垂线与以OM为直径的圆D交于P.Q两点
已知圆的方程:x∧2+y∧2-2x-4y+m=0 与直线方程x-y+1=0的两交点M、N满足OM垂直ON (O为坐标原点
设椭圆方程为(x^2)+(y^2)/4=1,过点M(0,1)的直线l交椭圆于A、B;O是坐标原点,点P满足OP→=1/2