已知数列{an}的前n项和Sn=n^2an(n≥2),而a1=1,通过计算a2,a3,猜想an等于?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 22:08:10
已知数列{an}的前n项和Sn=n^2an(n≥2),而a1=1,通过计算a2,a3,猜想an等于?
Sn=n^2an(n≥2),n^2是的平方- -,
Sn=n^2an(n≥2),n^2是的平方- -,
S2=a1+a2=1+a2=2²×a2
3a2=1
a2=1/3
S3=a1+a2+a3=1+1/3+a3=3²×a3
8a3=4/3
a3=1/6
a1=1=2/[1×(1+1)] a2=1/3=2/[2×(2+1)] 3=1/6=2/[3×(3+1)]
猜想:an=2/[n(n+1)]
证:
n≥2时,
Sn=n²×an S(n-1)=(n-1)²×a(n-1)
Sn-S(n-1)=an=n²×an-(n-1)²×an
(n²-1)an=(n-1)²×a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
an/a(n-1)=(n-1)/(n+1)
a(n-1)/a(n-2)=(n-2)/n
…………
a2/a1=1/3
连乘
an/a1=(1/3)(2/4)...[(n-1)/(n+1)]=[1×2×...×(n-1)]/[3×4×...×(n+1)]=2/[n(n+1)]
an=2a1/[n(n+1)]=2/[n(n+1)],
n=1时,a1=2/(1×2)=1,同样满足.
an=2/[n(n+1)],猜想正确.
3a2=1
a2=1/3
S3=a1+a2+a3=1+1/3+a3=3²×a3
8a3=4/3
a3=1/6
a1=1=2/[1×(1+1)] a2=1/3=2/[2×(2+1)] 3=1/6=2/[3×(3+1)]
猜想:an=2/[n(n+1)]
证:
n≥2时,
Sn=n²×an S(n-1)=(n-1)²×a(n-1)
Sn-S(n-1)=an=n²×an-(n-1)²×an
(n²-1)an=(n-1)²×a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
an/a(n-1)=(n-1)/(n+1)
a(n-1)/a(n-2)=(n-2)/n
…………
a2/a1=1/3
连乘
an/a1=(1/3)(2/4)...[(n-1)/(n+1)]=[1×2×...×(n-1)]/[3×4×...×(n+1)]=2/[n(n+1)]
an=2a1/[n(n+1)]=2/[n(n+1)],
n=1时,a1=2/(1×2)=1,同样满足.
an=2/[n(n+1)],猜想正确.
已知数列{an}的前n项和Sn=n^2an(n≥2),而a1=1,通过计算a2,a3,猜想an等于?
已知数列{an}的前n项和Sn=n2•an(n≥2),而a1=1,通过计算a2,a3,a4,试猜想这个数列的通项公式an
设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a
已知数列an的前n项和为sn,且sn+an=1/2(n2+5n+2)(2属于n*) 计算a1 a2 a3 a4
已知数列{an}的前n项和sn=n^2+2n+3,求和1/a1+a2+1/a2+a3+1/a3+a4+.+1/an+an
已知数列{an}的前n项和为Sn,a1=1/2,Sn=n^2*an.计算a2,a3,a4,猜想通项公式an,用数归法证明
已知数列an的前n项和为Sn=n^2+2n,求和:1/(a1*a2)+1/(a2*a3)+...+1/(an*a(n+1
已知数列an满足a1+2a2+3a3+...+nan=n(n+1)*(n+2),则数列an的前n项和Sn=?
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
已知{an}满足a1=1/2,且前n项和Sn满足Sn=n^2*an(n>=1),计算a2,a3,a4;猜想{an}的通项
已知数列{an}的前n项和为Sn,an>0(n属于N),Sn=1/2(an+1/an)(1)计算a1,a2,a3,a4,
已知数列{an}中,a1=1,前n项和sn=(n+2)an/3,求a2,a3求{an}的通项公式