设正数a1,a2,a3,···an成等差数列,求证:1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 16:27:30
设正数a1,a2,a3,···an成等差数列,求证:1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/(根号an+a(n-1)
==n/(根号a1+a(n+1)
==n/(根号a1+a(n+1)
证明,假设等差数列的公差为d.
因为
1/(根号a1 + 根号a2)
= (根号a2 - 根号a1) / (a2-a1)
= (根号a2 - 根号a1) / d
同理可得
1/(根号a2 + 根号a3)
= (根号a3 - 根号a2) / d
所以类似的有
1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/(根号a(n+1)+根号an)
=( (根号a2 - 根号a1) + (根号a3 - 根号a2) + ...+ (根号a(n+1) - 根号an )/d
= (根号a(n+1) - 根号a1)/d
= n(根号a(n+1) - 根号a1) / (nd)
= n(根号a(n+1)-根号a1) / (a(n+1) - a1)
= n / (根号a(n+1) + 根号a1)
因为
1/(根号a1 + 根号a2)
= (根号a2 - 根号a1) / (a2-a1)
= (根号a2 - 根号a1) / d
同理可得
1/(根号a2 + 根号a3)
= (根号a3 - 根号a2) / d
所以类似的有
1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/(根号a(n+1)+根号an)
=( (根号a2 - 根号a1) + (根号a3 - 根号a2) + ...+ (根号a(n+1) - 根号an )/d
= (根号a(n+1) - 根号a1)/d
= n(根号a(n+1) - 根号a1) / (nd)
= n(根号a(n+1)-根号a1) / (a(n+1) - a1)
= n / (根号a(n+1) + 根号a1)
设正数a1,a2,a3,···an成等差数列,求证:1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/
设an=根号n+根号(n+1),求Sn=a1+a2+a3+...+an
在正项数列an中Sn=1/(根号a1+根号a2)+1/(根号a2+根号a3)+...+1/(根号an+根号an+1)
an=1/[根号下(n+1)+根号下(n)],则a1+a2+a3+.+a10=
已知等比数列an中,各项都是正数,且2a2,2/1a1,3a3成等差数列,则a6+a7/根号下a8a10
设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(三次根号(an+1)),
设a1,a2,.an是正数.求证a2 /(a1+a2)^2+a3/(a1+a2+a3)^2+.+an/(a1+a2+.+
设a1,a2,a3为正数,求证a1*a2/a3+a2*a3/a1+a3*a1/a2>=a1+a2+a3
已知等比数列{an}的各项均为正数,公比q不等于1,设P=(a2+a3)/2,Q=根号a1*a4,
已知a1,a2,a3,a4的前3个数成等差数列,后3个数成公比为根号3的等比数列,则(a1+a2+a3)/(a2+a3+
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{根号Sn}是公差为2的等差数列.(1)求数列
设各项均为正数的数列{an}的前项和为sn,已知2a2=a1+a3,数列{根号sn}是公差为2的等差数列,