线性方程组同解问题2线性方程组同解 那么他们的秩相同 为什么? 比如要证明r(A)=r(AT) A为任意m*n矩阵 这里
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:14:16
线性方程组同解问题
2线性方程组同解 那么他们的秩相同 为什么? 比如要证明r(A)=r(AT) A为任意m*n矩阵 这里只要证明线性方程组 ax=0 与aTx=0有相同的解x就可以了 但是为什么?
2线性方程组同解 那么他们的秩相同 为什么? 比如要证明r(A)=r(AT) A为任意m*n矩阵 这里只要证明线性方程组 ax=0 与aTx=0有相同的解x就可以了 但是为什么?
矩阵相当于映射,矩阵奇异时,映射是多对1的;
m*n矩阵A就是将n维空间的点映射到m维空间(保持原点映为原点),其映射核定义为应到m维空间的原点的所有点;其秩则是像所能占据的最大的空间维数.映射核的维数+秩=min(n,m)
线性方程同解则这两个线性方程对应的矩阵可以将相同的子空间映射为m空间中的原点.即映射核相同,具有相同维数.因此秩也必须相同.
m*n矩阵A就是将n维空间的点映射到m维空间(保持原点映为原点),其映射核定义为应到m维空间的原点的所有点;其秩则是像所能占据的最大的空间维数.映射核的维数+秩=min(n,m)
线性方程同解则这两个线性方程对应的矩阵可以将相同的子空间映射为m空间中的原点.即映射核相同,具有相同维数.因此秩也必须相同.
线性方程组同解问题2线性方程组同解 那么他们的秩相同 为什么? 比如要证明r(A)=r(AT) A为任意m*n矩阵 这里
线性方程组的一道问题证明:设A为m*n矩阵,AT是A的转置矩阵,则n元齐次线性方程组AX=O与ATAX=O同解
设A为m×n实矩阵,证明线性方程组Ax=0与A'Ax=0同解
向量组证明问题设A,B分别为m*r,r*n阶矩阵,且AB=0,求证(1)B的各列向量是齐次线性方程组AX=0的解(2)若
m×n矩阵A的秩等于r,则n元齐次线性方程组Ax=0的解集S的秩R等于n-r.证明过程中为什么设
m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a
证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是
线性代数的问题设有齐次线性方程组Ax=0和BX=0,其中A,B均为m*n矩阵,证明若Ax=0的解均是Bx=0的解,则秩r
设A为M*N矩阵,且非齐次线性方程组AX=b有唯一解,为什么则r(A)=n
设A是一个N*N矩阵,证明:如果A的秩等于A平方的秩,则齐次线性方程组AX=0与齐次线性方程组A平方X=0同解.
设A是mxn矩阵,B是nxs矩阵,证明:线性方程组ABX=0与BX=0同解的充分必要条件是R(AB)=R(B)
设非齐次线性方程组Ax=b中,系数矩阵A为m*n矩阵,且R(A)=r