作业帮 > 数学 > 作业

求解,用换元法解'求过程 ∫√(2-x^2)dx

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:51:11
求解,用换元法解'求过程 ∫√(2-x^2)dx
令x = √2siny.dx = √2cosy dy
∫ √(2 - x^2) dx
= ∫ √(2 - 2sin^2y)(√2cosy dy)
= 2∫ cos^2y dy
= ∫ (1 + cos2y) dy
= y + (1/2)sin2y + C
= y + siny√(1 - sin^2y) + C
= arcsin(x/√2) + (x/√2)√(1 - x^2/2) + C
= arcsin(x/√2) + (x/2)√(2 - x^2) + C