作业帮 > 数学 > 作业

求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:45:13
求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx

图片上后面少打了个 =tan x

由倍角公式及半角公式有:
sin(2x)=2sin(x)cos(x)
tan(x/2)=(1-cos(x))/sin(x)
则,原式 = [2sin(x)cos(x)/2cos(x)]*{1+[sin(x)/cox(x)]*[(1-cos(x))/sin(x)]} = sin(x)*(1+(1-cos(x))/cos(x)) = sin(x)/cos(x) = tan(x)