参数方程x=t³+2t²/t²-1 y=2t³+t²/t²-
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 02:00:10
参数方程x=t³+2t²/t²-1 y=2t³+t²/t²-1 化为普通方程
参数方程x=(t³+2t²)/(t²-1); y=(2t³+t²)/(t²-1) 化为普通方程
y/x=(2t³+t²)/(t³+2t²)=(2t+1)/(t+2)
(t+2)y=(2t+1)x;ty-2tx=x-2y,即有(y-2x)t=x-2y,故t=(x-2y)/(y-2x).(1);
将(1)代入y的表达式得:
y=[2(x-2y)³/(y-2x)³+(x-2y)²/(y-2x)²]/[(x-2y)²/(y-2x)²-1]
=[2(x-2y)³+(x-2y)²(y-2x)]/{[(x-2y)²-(y-2x)²](y-2x)}
=[(x-2y)²(2x-4y+y-2x)]/[(x-2y+y-2x)(x-2y-y+2x)(y-2x)]
=[-3y(x-2y)²]/[-(x+y)(3x-3y)(y-2x)]
=[-3y(x-2y)²]/[-3(x²-y²)(y-2x)]
=y(x-2y)²/(x²-y²)(y-2x)
消去y并去分母得(x-2y)²=(x²-y²)(y-2x)
故得普通方程:(x-2y)²-(x²-y²)(y-2x)=0.
y/x=(2t³+t²)/(t³+2t²)=(2t+1)/(t+2)
(t+2)y=(2t+1)x;ty-2tx=x-2y,即有(y-2x)t=x-2y,故t=(x-2y)/(y-2x).(1);
将(1)代入y的表达式得:
y=[2(x-2y)³/(y-2x)³+(x-2y)²/(y-2x)²]/[(x-2y)²/(y-2x)²-1]
=[2(x-2y)³+(x-2y)²(y-2x)]/{[(x-2y)²-(y-2x)²](y-2x)}
=[(x-2y)²(2x-4y+y-2x)]/[(x-2y+y-2x)(x-2y-y+2x)(y-2x)]
=[-3y(x-2y)²]/[-(x+y)(3x-3y)(y-2x)]
=[-3y(x-2y)²]/[-3(x²-y²)(y-2x)]
=y(x-2y)²/(x²-y²)(y-2x)
消去y并去分母得(x-2y)²=(x²-y²)(y-2x)
故得普通方程:(x-2y)²-(x²-y²)(y-2x)=0.
参数方程x=t³+2t²/t²-1 y=2t³+t²/t²-
x=2/1+t²,y=2t/1+t²的参数方程
参数方程x=t+1/t-1 y=2t/t^3-1
已知参数方程x=t^2-3t+1 ,y=t-1 (t为参数)化为普通方程
曲线的参数方程是x=1-1/t,y=1-t²(t是参数t=0),它的普通方程是
x=t+1/t y=t^2+1/t^2 将参数方程化成普通方程
将参数方程x=2-3t/1+t,y=1+4t/1+t(t为参数)化为普通方程
化参数方程为一般方程x=t-(2/t)-1 y=t+(2/t)-1
判断参数方程x=[a(1-t²)]/[1+t²] y=﹙2bt﹚/﹙1+t²﹚ (a>0,
参数方程x=t^2+2t y=2t^3+3t^2 怎么消参数
曲线参数方程{x=3t^2+2 y=t^2-1 (t为参数)是什麽曲线?
参数方程为x=t+1/t,y=2(t为参数)表示的曲线是