(2013?郑州一模)如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/09 03:08:09
(2013?郑州一模)如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE
(Ⅰ)在棱A′B上找一点F,使EF∥平面A′CD;
(Ⅱ)当四棱锥A'-BCDE体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.
(Ⅰ)在棱A′B上找一点F,使EF∥平面A′CD;
(Ⅱ)当四棱锥A'-BCDE体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.
(I)当F为棱A'B的中点时,EF∥平面A′CD.证明如下:
取A'C的中点G,连结DG、EF、GF,则
由中位线定理得DE∥BC、DE=
1
2BC,且F∥BC、GF=
1
2BC.
∴DE∥GF且DE=GF,可得四边形DEFG是平行四边形,
∴EF∥DG
∵EF?平面A'CD,DG?平面A'CD,∴EF∥平面A′CD
因此,当F为棱A'B的中点时,EF∥平面A′CD.----(4分)
(II)在平面A′CD内作A'H⊥CD于点H,
∵DE⊥A'D,DE⊥CD,且A'D∩CD=D
∴DE⊥平面A'CD,可得A'H⊥DE,
又∵DE∩CD=D,∴A'H⊥底面BCDE,即A'H就是四棱锥A'-BCDE的高.
由A'H≤AD,得点H和D重合时,四棱锥A'-BCDE体积取最大值.--(8分)
分别以DC、DE、DA'所在直线为x轴、y轴、z轴,建立空间直角坐标系如图,
则A'(0,0,a),B(a,2a,0),E(0,a,0),
∴
A′B=(a,2a,-a),
A′E=(0,a,-a),
设平面A'BE的一个法向量为
m=(x,y,z),
由
m?
A′B=ax+2ay?az=0
取A'C的中点G,连结DG、EF、GF,则
由中位线定理得DE∥BC、DE=
1
2BC,且F∥BC、GF=
1
2BC.
∴DE∥GF且DE=GF,可得四边形DEFG是平行四边形,
∴EF∥DG
∵EF?平面A'CD,DG?平面A'CD,∴EF∥平面A′CD
因此,当F为棱A'B的中点时,EF∥平面A′CD.----(4分)
(II)在平面A′CD内作A'H⊥CD于点H,
∵DE⊥A'D,DE⊥CD,且A'D∩CD=D
∴DE⊥平面A'CD,可得A'H⊥DE,
又∵DE∩CD=D,∴A'H⊥底面BCDE,即A'H就是四棱锥A'-BCDE的高.
由A'H≤AD,得点H和D重合时,四棱锥A'-BCDE体积取最大值.--(8分)
分别以DC、DE、DA'所在直线为x轴、y轴、z轴,建立空间直角坐标系如图,
则A'(0,0,a),B(a,2a,0),E(0,a,0),
∴
A′B=(a,2a,-a),
A′E=(0,a,-a),
设平面A'BE的一个法向量为
m=(x,y,z),
由
m?
A′B=ax+2ay?az=0
(2013•郑州一模)如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将
(2013?郑州一模)如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将
如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC..AB的中点,沿DE将△ADE折起,得到
一,如图,在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF‖AC交DE
如图,在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延
已知.如图等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、、AC上的点,且满足EA=CF.求证DE
如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E,F分别是AB,AC边上得点,且DE⊥DF,若BE=2
如图,在等腰Rt△ABC中,∠ACB=90°,D为的BD中点,DE⊥AB,垂足为E,过点B作BF平行AC交DE的延长线于
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B做BF‖AC交DE的延长线与点
如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF//AC交DE的延长线于
△abc为等腰直角三角形,ab=ac,d为斜边bc的中点,e、f分别为ab、ac上的点,且de⊥df.
如图,等腰直角三角形ABC中,∠ACB=90°,D点是AC上任意一点,DE⊥AB于E,连结BD,取BD中点F,连接CF,