求lim(x→0) (√1-cosx^2)/(1-cosx),还有题lim(x→0) (x-xcosx)/(tanx-s
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 08:07:18
求lim(x→0) (√1-cosx^2)/(1-cosx),还有题lim(x→0) (x-xcosx)/(tanx-sinx),
不用洛必达法则,怎么求这两道题的极限呢?
不用洛必达法则,怎么求这两道题的极限呢?
(1)lim(x->0)[√(1-cos(x²))/(1-cosx)]=lim(x->0)[√(2sin²(x²/2))/(2sin²(x/2))] (应用半角公式)
=√2lim(x->0)[(sin(x²/2)/(x²/2))((x/2)/sin(x/2))²]
=√2{lim(x->0)[sin(x²/2)/(x²/2)]}*{lim(x->0)[(x/2)/sin(x/2)]}²
=√2*1*1² (应用重要极限lim(z->0)(sinz/z)=1)
=√2
(2)lim(x->0)[(x-xcosx)/(tanx-sinx)]=lim(x->0)[x(1-cosx)/(sinx/cosx-sinx)]
=lim(x->0)[x(1-cosx)cosx/sinx(1-cosx)]
=lim(x->0)[(x/sinx)cosx]
=[lim(x->0)(x/sinx)]*[lim(x->0)(cosx)]
=1*1 (应用重要极限lim(z->0)(sinz/z)=1)
=1
=√2lim(x->0)[(sin(x²/2)/(x²/2))((x/2)/sin(x/2))²]
=√2{lim(x->0)[sin(x²/2)/(x²/2)]}*{lim(x->0)[(x/2)/sin(x/2)]}²
=√2*1*1² (应用重要极限lim(z->0)(sinz/z)=1)
=√2
(2)lim(x->0)[(x-xcosx)/(tanx-sinx)]=lim(x->0)[x(1-cosx)/(sinx/cosx-sinx)]
=lim(x->0)[x(1-cosx)cosx/sinx(1-cosx)]
=lim(x->0)[(x/sinx)cosx]
=[lim(x->0)(x/sinx)]*[lim(x->0)(cosx)]
=1*1 (应用重要极限lim(z->0)(sinz/z)=1)
=1
求lim(x→0) (√1-cosx^2)/(1-cosx),还有题lim(x→0) (x-xcosx)/(tanx-s
求Lim(x→0)(sinx/x)^(cosx/1-cosx)
lim(sinx-xcosx)/x(1-cosx)用洛必达法则求极限(x)趋近于0
lim x→0 1-cosx/xsinx
lim(x→0)(1/cosx)=?
求极限lim(x→0)x²/1-cosx
lim(x→0)(cosx)^(1/ln(1+x^2))
lim(x→0)(ln(1+x^2)/(sec-cosx))
lim x→0+ (1-(cosx)^1/2)tanx/(1-cosx)^(3/2)=根号2/2
lim(x→0)(1-cosx)[x-ln(1+tanx)]/(sinx)^4
x→0,lim(1-cosx)[x-ln(1+tanx)]/sinx^4的极限
已知lim(x→0) f(x)/(1-cosx) =2 求lim(x→0) [1+f(x)]^½