已知abc均为正实数,且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)大于等于8
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:44:28
已知abc均为正实数,且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)大于等于8
这个题证法很多,给你两种:
证法一:
1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a
1/b-1=(c+a)/b≥2【√(ca)】/b
1/c-1=(a+b)/c≥2【√(ab)】/c
(1/a-1)(1/b-1)(1/c-1)≥2【√(bc)】/a*2【√(ca)】/b*2【√(ab)】/c
=8abc/abc=8
当且仅当a=b=c=1/3时取等号.
证法二:
因为a+b+c=1,
所以(1/a-1)(1/b-1)(1/c-1)
=[(a+b+c)/a-1][(a+b+c)/b-1][(a+b+c)/c-1]
=(1+b/a+c/a-1)(1+a/b+c/b-1)(1+a/c+b/c-1)
=(b/a+c/a)(a/b+c/b)(a/c+b/c)
≥(2bc/a^2)(2ac/b^2)(2ab/c^2)
=8
当且仅当a=b=c=1/3时取等号.
证法一:
1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a
1/b-1=(c+a)/b≥2【√(ca)】/b
1/c-1=(a+b)/c≥2【√(ab)】/c
(1/a-1)(1/b-1)(1/c-1)≥2【√(bc)】/a*2【√(ca)】/b*2【√(ab)】/c
=8abc/abc=8
当且仅当a=b=c=1/3时取等号.
证法二:
因为a+b+c=1,
所以(1/a-1)(1/b-1)(1/c-1)
=[(a+b+c)/a-1][(a+b+c)/b-1][(a+b+c)/c-1]
=(1+b/a+c/a-1)(1+a/b+c/b-1)(1+a/c+b/c-1)
=(b/a+c/a)(a/b+c/b)(a/c+b/c)
≥(2bc/a^2)(2ac/b^2)(2ab/c^2)
=8
当且仅当a=b=c=1/3时取等号.
已知abc均为正实数,且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)大于等于8
已知a b c均为正实数且ab+ac+bc=1,求证:(a+b+c)的平方大于等于3
a,b,c,属于正实数,且a+b+c=1求证(1+a)(1+b)(1+c)大于等于8(1-a)(1-b)(1-c)
已知a,b,c属于正实数,且a+b+c=1求证a加a分之一乘以b+b分之一大于等于25/4
已知abc属于正实数 且abc=1 求证(a+b)(b+c)(c+a)≥8
已知a,b,c属于正实数,且a+b+c=1,求证:1/a+1/b+1/c大于等于9
已知a,b,c是正实数 且a+b+c=1.求证:a^2+b^2+c^2大于等于1/3
a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2
已知a,b,c为实数,且a+b+c=0,abc=1,求证:a,b,c三数中必有一个大于3/2.
已知a,b,c为实数,且a+b+c=0 ,abc=1,求证:a,b,c三数中必有一个大于3/2.
已知:a,b,c为正实数,且a+b+c=1求证:根号a + 根号b +根号c小于等于根号3
已知.a.b.c都是正实数,且ab+bc+ca=1求证:a+b+c大于等于根号3