作业帮 > 数学 > 作业

如图,正方形ABCD的面积为5,AB⊥BC.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:44:42
如图,正方形ABCD的面积为5,AB⊥BC.

(1)如果点G、E分别在AB、BC上,FE⊥BC,说明∠CHE=∠CGB的理由.
(2)如果四边形BEFG是正方形,且它的面积为3,求三角形GCE的面积.
(1)∵AB⊥BC,FE⊥BC (已知),
∴∠B=∠FEC=90°(垂直的意义),
∴EF∥AB (同位角相等,两直线平行),
∴∠CHE=∠CGE (两直线平行,同位角相等);
(2)∵正方形ABCD与BEFG的面积分别为5、3,
∴它们的边长分别为BC=
5、BE=
3,
∴CE=BC-BE=
5-
3,
∴△GCE的面积为=
1
2CE•GB=
1
2(
5-
3)×
3=
1
2
15-
3
2.