过抛物线y=ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1/p+1/q等
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:44:37
过抛物线y=ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1/p+1/q等于?
不妨设p>q,抛物线准线方程L:x=-1/4a,做PE⊥L于E,QH⊥L于H,L交轴于F',直线PQ交L于G,FF'=1/2a,则
PE=PF=p
QH=QF=q
GP/PE=GQ/QH,即
GP/p=(GP+p+q)/q
GP=p(p+q)/(q-p)
GP/PE=GF/FF',即
[p(p+q)/(q-p)]/p=(p(p+q)/(q-p)]+p)/(1/2a)
(p+q)/(q-p)=2a(p^2+pq+pq-p^2)/(q-p)
(p+q)/pq=4a
1/p+1/q=4a
PE=PF=p
QH=QF=q
GP/PE=GQ/QH,即
GP/p=(GP+p+q)/q
GP=p(p+q)/(q-p)
GP/PE=GF/FF',即
[p(p+q)/(q-p)]/p=(p(p+q)/(q-p)]+p)/(1/2a)
(p+q)/(q-p)=2a(p^2+pq+pq-p^2)/(q-p)
(p+q)/pq=4a
1/p+1/q=4a
过抛物线y=ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1/p+1/q等
1.过抛物线y=ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ长分别为p、q,则1/p+1/q
过抛物线y=ax^2(a>0)的焦点F作一直线交抛物线交于P、Q两点,若线段PF、FQ的长分别为p、q,则1/p+1/q
过抛物线y=ax²(a>0),的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别为p,q,则1/q
过抛物线y =ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长
高二圆锥曲线:椭圆过抛物线y=ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,
过抛物线y=aX2(a>0)的焦点F作一直线交抛物线于PQ两点,若线段PF与FQ的长分别为p、q,则1/p+1/q=
过抛物线y^2=ax的焦点F作一直线交抛物线于P,Q两点,若线段PF与PQ的长分别是p,q,则1/p+1/q等于____
过抛物线y=ax^2(a>0)的焦点F做一直线交抛物线与P ,Q两点,若线段PF与PQ的长分别是p.q则,(1/p)+(
过抛物线y²=2ax(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与QF的长分别是m,n,则1/m
抛物线焦点弦公式过y=ax^2的焦点作直线交抛物线于P,Q两点.PF=p,QF=q,求1/p+1/q的值.速求.感激不尽
抛物线的一道题过抛物线y^2=8x 的焦点作直线交抛物线于P.Q两点,则线段P,Q的中点的轨迹方程为A.y=4X-1 B