作业帮 > 数学 > 作业

△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求C.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 15:24:54
△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求C.
由B=π-(A+C)可得cosB=-cos(A+C)
∴cos(A-C)+cosB=cos(A-C)-cos(A+C)=2sinAsinC=1
∴sinAsinC=
1
2①
由a=2c及正弦定理可得sinA=2sinC②
①②联立可得,sin2C=
1
4
∵0<C<π
∴sinC=
1
2
a=2c即a>c
C=
π
6