作业帮 > 数学 > 作业

立体几何证明题目,第10题

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:47:24
立体几何证明题目,第10题
 
取BC中点为E,连接AE、DE
因为AD是等边△ABC的高,由等边三角形三线合一性质知
AD垂直平分BC
沿AD转动后,知AD⊥AD
所以AD⊥平面BCD
所以AE在平面BCD的射影是DE
又E是BC中点,BC=DC
所以DE⊥BC
由三垂线定理知,AE⊥BC
所以二面角A-BC-D的平面角是∠AED
因BC=1
AD=√(AC²-DC²)=√3/2
BC=√(DC²+DB²)=√2/2
DE=EC=BC/2=√2/4
tan∠AED=AD/DE=√6