作业帮 > 数学 > 作业

已知a〉0,且a不等于1,f(loga(x))=(a/(a^2-1))*(x-1/x). (1)求f(x)的表达式

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 12:02:43
已知a〉0,且a不等于1,f(loga(x))=(a/(a^2-1))*(x-1/x). (1)求f(x)的表达式
(2)判断f(x)的奇偶性
(3)判断f(x)的单调性
f(loga(x))=(a/(a^2-1))*(x-1/x).
loga(x)=t
a^t=x
f(t)=(a/(a^2-1))(a^t-1/a^t)
f(x)=(a/(a^2-1))(a^x-1/a^x)=(a/(a^2-1))(a^x-a^-x)
f(-x)=(a/(a^2-1))(a^-x-a^x)=-(a/(a^2-1))(a^x-a^-x)=-f(x)
所以f(x)的奇函数
(2)
若a>1,a/(a^2-1))>0
a^x是增函数,a^-x是减函数,-a^-x是增函数
所以f(x)=(a/(a^2-1))(a^x-a^-x)是增函数
若0