已知函数发f(x)=2alnx-x^2+1,试比较2/ln2+2/ln3+...+2/lnn与(3n^2-n-2)/(n
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 04:41:06
已知函数发f(x)=2alnx-x^2+1,试比较2/ln2+2/ln3+...+2/lnn与(3n^2-n-2)/(n(n+1))的大小(其中n大于等于2是
结论: 2/ln2+2/ln3+...+2/lnn>(3n^2-n-2)/(n(n+1)) (n>=2)
证明方法:分析法.
设a[1]=0,a[n]=2/ln(n) (n>=2),前n项和S[n].
b[n]的前n项和T[n], T[n]=(3n^2-n-2)/(n(n+1)) [ ]内是数列的下标.
由(1) b[1]=0, b[n]=T[n]-T[n-1]=...=4/(n(n+2)) (n>=2)
由(1)(2)步,要证结论为真,只需证n>=2时,
a[n]>b[n], 即 2/ln(n)>4/(n(n+2))
上式为真,只需证n>=2时,ln(n^2)<n^2+n (*)
构造函数f(x)=ln(x)-x+1,(x>0), 容易证明 x>1时,ln(x)<x-1
由(4) n>=2时,ln(n^2)<n^2-1
(*)式为真,只需证n>=2时,n^2-1<n^2+n , 即证-1<n
由(5) n>=2时,-1<n 为真,得证.
正式书写时,可把分析法转化为综合法,俗称“逆推顺证”
希望能对你有点帮助!
证明方法:分析法.
设a[1]=0,a[n]=2/ln(n) (n>=2),前n项和S[n].
b[n]的前n项和T[n], T[n]=(3n^2-n-2)/(n(n+1)) [ ]内是数列的下标.
由(1) b[1]=0, b[n]=T[n]-T[n-1]=...=4/(n(n+2)) (n>=2)
由(1)(2)步,要证结论为真,只需证n>=2时,
a[n]>b[n], 即 2/ln(n)>4/(n(n+2))
上式为真,只需证n>=2时,ln(n^2)<n^2+n (*)
构造函数f(x)=ln(x)-x+1,(x>0), 容易证明 x>1时,ln(x)<x-1
由(4) n>=2时,ln(n^2)<n^2-1
(*)式为真,只需证n>=2时,n^2-1<n^2+n , 即证-1<n
由(5) n>=2时,-1<n 为真,得证.
正式书写时,可把分析法转化为综合法,俗称“逆推顺证”
希望能对你有点帮助!
已知函数发f(x)=2alnx-x^2+1,试比较2/ln2+2/ln3+...+2/lnn与(3n^2-n-2)/(n
已知函数f(x)=lnx-x+1证明ln2^2/2^2+ln3^2/3^2+…+lnn^2/n^2=2)
已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(
设函数f(x)=Inx-px+1,证明:ln2^2/2^2+ln3^2/3^2+……+lnn^2/n^2
证明ln2/2^2+ln3/3^2+.+lnn/n^2
求证ln2/2^4+ln3/3^4+.+lnn/n^4
证明ln2/(2^4) + ln3/(3^4) +...+lnn/(n^4)
证明(ln2)/2^4+(ln3)/3^4+...+(lnn)/n^4
证明:ln2/(2^4) + ln3/(3^4) +...+lnn/(n^4)
设函数f(x)=px-p/x-2lnx,证明ln2/2^2+ln3/3^2+……lnn/n^2
如何证明:n>=2时,ln2/2!+ln3/3!+----+lnn/n!
急求!求证(ln2/2)*(ln3/3)*(ln4/4)*…*(lnn/n)=2)