====各位数学大牛帮解一道小题,关于置信区间的========
来源:学生作业帮 编辑:作业帮 分类:英语作业 时间:2024/11/08 06:56:55
====各位数学大牛帮解一道小题,关于置信区间的========
Two random samples are taken,with each group asked if they support a particular candidate.A summary of the sample sizes and proportions of each group answering ``yes'' are given below:
Pop1:n1=93 p1=0.753
Pop2:n2=93 p2=0.575
Suppose that the data yields (0.0506,0.3054) for a confidence interval for the difference p1-p2 of the population proportions.What is the confidence level?(Give your answer in terms of percentages.)
Question:Confidence Level =_________________________?
在得到了critical value Z的情况下怎么反推出 confidence level 就是%的那个。
Two random samples are taken,with each group asked if they support a particular candidate.A summary of the sample sizes and proportions of each group answering ``yes'' are given below:
Pop1:n1=93 p1=0.753
Pop2:n2=93 p2=0.575
Suppose that the data yields (0.0506,0.3054) for a confidence interval for the difference p1-p2 of the population proportions.What is the confidence level?(Give your answer in terms of percentages.)
Question:Confidence Level =_________________________?
在得到了critical value Z的情况下怎么反推出 confidence level 就是%的那个。
Suppose the true expectations of the two kinds of random variables, denoted as X1 and X2, are p10 and p20 respectively. The null hypothesis is H0: p10 - p20 = 0.
Thus, we can construct the statistic : p1 - p2 / sd(p1 - p2) to test H0, where sd(p1 - p2) signifies the standard deviation of (p1 - p2). Since sd(p1 - p2) is unknown, we can replace it by its consistent estimator se(p1 - p2), i.e., the standard error of (p1 - p2).
Now, note that Var(p1 - p2) = Var(p1) + Var(p2) = Var(X1)/93 + Var(X2)/93. Moreover,
Var(X1) can be estimated by the sample variance of sample 1, which is p1(1-p1). Similarly, we can use p2(1-p2) to estimate Var(X2). Consequently, se(p1 - p2) = {[p1(1-p1) + p2(1-p2)]/93}^(0.5).
Suppose the confidence level is c. Thus, the confidence interval is
-c < (p1 - p2 - (p10 - p20))/se(p1-p2)
再问: 我得到的Z也是1.8728但是confidence level 怎么求呢?
再答: 这个一般按中心极限定理假设正态分布能近似该统计量,所以只需查表或用软件算一下它对应的percentile就行了,我刚算了下,应该是6.109573%。
再问: 大神好像不对诶。。哎郁闷了。。你是用表算的还是软件。用表是用table a吗 然后用1.87去寻找百分比? 但我这样算出来是0.9693. 我第一次的时候得出的答案就是这个,但不对。。不知道错哪了。
再答: 你算出来的是P(X
Thus, we can construct the statistic : p1 - p2 / sd(p1 - p2) to test H0, where sd(p1 - p2) signifies the standard deviation of (p1 - p2). Since sd(p1 - p2) is unknown, we can replace it by its consistent estimator se(p1 - p2), i.e., the standard error of (p1 - p2).
Now, note that Var(p1 - p2) = Var(p1) + Var(p2) = Var(X1)/93 + Var(X2)/93. Moreover,
Var(X1) can be estimated by the sample variance of sample 1, which is p1(1-p1). Similarly, we can use p2(1-p2) to estimate Var(X2). Consequently, se(p1 - p2) = {[p1(1-p1) + p2(1-p2)]/93}^(0.5).
Suppose the confidence level is c. Thus, the confidence interval is
-c < (p1 - p2 - (p10 - p20))/se(p1-p2)
再问: 我得到的Z也是1.8728但是confidence level 怎么求呢?
再答: 这个一般按中心极限定理假设正态分布能近似该统计量,所以只需查表或用软件算一下它对应的percentile就行了,我刚算了下,应该是6.109573%。
再问: 大神好像不对诶。。哎郁闷了。。你是用表算的还是软件。用表是用table a吗 然后用1.87去寻找百分比? 但我这样算出来是0.9693. 我第一次的时候得出的答案就是这个,但不对。。不知道错哪了。
再答: 你算出来的是P(X
====各位数学大牛帮解一道小题,关于置信区间的========
请教概率论之中的置信区间(a=0.05)中,u(a/2)=1.96是怎么得出来的?
6.一次数学小测试中,有这样一道填空题:0.3=%.小丽
问各位一道题,小学五年级数学方程题5+x=15+x怎么解要解的过程.谢谢
在抽样分布那课书中已经有公式算出样本均值=总体的均值,为何还要用置信区间去估计总体均值的范围?
帮忙查T分布图,能不能帮我查下自由度106,置信区间0.05(a=0.05)的t值是多少
是一道六年纪数学,在一次数学小测验中,有这样一道填空题0.3=----%,小里在横线上填
请问各位数学天才关于∫(arcsinx)²dx=?的这两种做法都正确吗
一道数学数字推理题 = =
求一道数学简单几何图的题= =,
有取自总体X~N(U,4)容量为16的简单随机样本,若测得样本平均值M=10,求U的置信度为0.95的置信区间.Ua=1
自正态总体中随机抽取容量为n的样本,均值33,标准差4,当n=25,总体均值95%的置信区间是?当n=5又是多少?