凸函数的f(x),是否有(f(x1)+f(x2)+f(x3))/3
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:56:51
凸函数的f(x),是否有(f(x1)+f(x2)+f(x3))/3<=f((x1+x2+x3)/3)?怎么证明?
琴生不等式
琴生不等式:(注意前提、等号成立条件)
设f(x)为上凸函数,则f[(x1+x2+……+xn)/n]>=[f(x1)+f(x2)+……+f(xn)]/n,称为琴生不等式(幂平均).
加权形式为:
f[(a1x1+a2x2+……+anxn)]>=a1f(x1)+a2(x2)+……+anf(xn),其中
ai>=0(i=1,2,……,n),且a1+a2+……+an=1.
凸函数的概念:
【定义】如果函数f(x)满足对定义域上任意两个数x1,x2都有(f(x1)+f(x2))/2>=f((x1+x2)/2),那么f(x)为凹函数,或下凸函数.
【定义】如果函数f(x)满足对定义域上任意两个数x1,x2都有(f(x1)+f(x2))/2=f((x1+x2+...+xn)/n)
对于任意的凸函数f(x)以及其定义域上n个数x1,x2,...,xn,那么都有(f(x1)+f(x2)+...+f(xn))/n=(f(((x1+x2+...+x(n/2))/(n/2))+f((x(n/2+1)+...+xn)/(n/2)))/2
>=f(((((x1+x2+...+x(n/2))/(n/2)+(x(n/2+1)+...+xn)/(n/2)))/2)
=f((x1+x2+...+xn)/n)
所以对于所有2的幂,琴生不等式成立.
现在对于一个普通的n,如果n不是2的幂,我们可以找到一个k,使得2^k>n
然后我们设
x(n+1)=x(n+2)=...=x(2^k)=(x1+x2+...+xn)/n
代入2^k阶的琴生不等式结论,整理后就可以得到结论.
现在看看如何使用琴生不等式证明平方平均不等式
(x1^2+x2^2+...+xn^2)/n>=[(x1+x2+...+xn)/n]^2
显然,我们可以查看函数f(x)=x^2
由于
(f(x1)+f(x2))/2=(x1^2+x2^2)/2=(2x1^2+2x2^2)/4>=(x1^2+x2^2+2x1x2+(x1-x2)^2)/4>=(x1^2+x2^2+2x1x2)/4=((x1+x2)/2)^2
所以f(x)=x^2是凹函数
所以我们可以得到,对于任意x1,x2,...,xn,
有(f(x1)+f(x2)+...+f(xn))/n>=f((x1+x2+...+xn)/n)
也就是n阶平方平均不等式.
从上面证明过程我们知道通常情况用初等方法判断函数的凹凸性比较麻烦.
不过如果利用数学分析我们可以有个非常方便的结论.
如果f(x)二阶可导,而且f''(x)>=0,那么f(x)是凹函数
如果f(x)二阶可导,而且f''(x)
琴生不等式:(注意前提、等号成立条件)
设f(x)为上凸函数,则f[(x1+x2+……+xn)/n]>=[f(x1)+f(x2)+……+f(xn)]/n,称为琴生不等式(幂平均).
加权形式为:
f[(a1x1+a2x2+……+anxn)]>=a1f(x1)+a2(x2)+……+anf(xn),其中
ai>=0(i=1,2,……,n),且a1+a2+……+an=1.
凸函数的概念:
【定义】如果函数f(x)满足对定义域上任意两个数x1,x2都有(f(x1)+f(x2))/2>=f((x1+x2)/2),那么f(x)为凹函数,或下凸函数.
【定义】如果函数f(x)满足对定义域上任意两个数x1,x2都有(f(x1)+f(x2))/2=f((x1+x2+...+xn)/n)
对于任意的凸函数f(x)以及其定义域上n个数x1,x2,...,xn,那么都有(f(x1)+f(x2)+...+f(xn))/n=(f(((x1+x2+...+x(n/2))/(n/2))+f((x(n/2+1)+...+xn)/(n/2)))/2
>=f(((((x1+x2+...+x(n/2))/(n/2)+(x(n/2+1)+...+xn)/(n/2)))/2)
=f((x1+x2+...+xn)/n)
所以对于所有2的幂,琴生不等式成立.
现在对于一个普通的n,如果n不是2的幂,我们可以找到一个k,使得2^k>n
然后我们设
x(n+1)=x(n+2)=...=x(2^k)=(x1+x2+...+xn)/n
代入2^k阶的琴生不等式结论,整理后就可以得到结论.
现在看看如何使用琴生不等式证明平方平均不等式
(x1^2+x2^2+...+xn^2)/n>=[(x1+x2+...+xn)/n]^2
显然,我们可以查看函数f(x)=x^2
由于
(f(x1)+f(x2))/2=(x1^2+x2^2)/2=(2x1^2+2x2^2)/4>=(x1^2+x2^2+2x1x2+(x1-x2)^2)/4>=(x1^2+x2^2+2x1x2)/4=((x1+x2)/2)^2
所以f(x)=x^2是凹函数
所以我们可以得到,对于任意x1,x2,...,xn,
有(f(x1)+f(x2)+...+f(xn))/n>=f((x1+x2+...+xn)/n)
也就是n阶平方平均不等式.
从上面证明过程我们知道通常情况用初等方法判断函数的凹凸性比较麻烦.
不过如果利用数学分析我们可以有个非常方便的结论.
如果f(x)二阶可导,而且f''(x)>=0,那么f(x)是凹函数
如果f(x)二阶可导,而且f''(x)
凸函数的f(x),是否有(f(x1)+f(x2)+f(x3))/3
若函数f(x)是奇函数,且函数f(x)有三个零点x1、x2、x3,则x1+x2+x3的值是______.
设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/
设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2
函数f(x)对任意实数x都有f(X)=f(x的绝对值)若函数y=f(x)只有三个零点x1.x2.x3则x1+x2+x3=
函数f(x),x∈R,若对于任意实数x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1).f(x2),求证f(
设函数f(x)的定义域关于原点对称,且对于定义域内任意x1≠x2有f(x1-x2)=[1+f(x1)+f(x2)]/[f
已知函数f(x)=x3+bx2+cx+d的零点x1,x2,x3满足-2
函数f(x)对任何x属于R+恒有f(x1*x2)=f(x1)+f(x2),已知f(8)=3,则f(根号2)=
定义在R上的函数y=f(x),恒有f(3+x)=f(3-x),且方程f(x)=0恰好有四个不同的实根x1,x2,x3,x
已知函数f(x)=-x³,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)
设f(x)是定义在R上单调递减的奇函数,若X1+X2>0,X2+X3>0,X3+X1>0,则f(X1)+f(X2)+f(