已知a,b,c是△abc的三边长,且方程a(1+x²)=2bx-c(1-x²)=0的两根相等,判断三
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 20:06:16
已知a,b,c是△abc的三边长,且方程a(1+x²)=2bx-c(1-x²)=0的两根相等,判断三角形的形状
的对称性(M,N)的中心点
到原始曲线(P,Q)上的任意点是对称于该曲线的中心点(3219米 - 对为2n-q)的应对,那就是:
比索(PA)(PB)(PC)= Q
比索(2M-PA)(2M-PB)(2M-PC)= 2N-Q
上下两方程和消除的Q,后来简化为:
为2n =(PA)(PB)(PC) - (4 - (2M-A))(对 - (2M-B))(对 - (2M-C)) - 中东= P ^ 3-P ^ 2 *(A + B + C)+ P(AB + BC + AC)-abc-
[P ^ 3-P ^ 2 *(2M-A + 2M-B + 2M-C)+ P [(2M-A) (2M-B)+(2M-C)(2M-B)+(2M-A)(2M-C) - (2M-A)(2M-B)(2M-C)]
= P ^ 2 *(6M-2A-2B-2C)+ P(4M(A + B + C)-12m ^ 2)+(2M-A)(2M-B)(2M-C) -abc
因为P,Q是任意的都是真的,所以
6M-2A-2B-2C = 0
4米( A + B + C)-12m ^ 2 = 0
为2n =(2M-A)(2M-B)(2M-C)-abc
因此,M =(A + B + C)/ 3,住宅N =(2B + 2C-A)(2A + 2C-B)(2A + 2B-C)/ 6-ABC /对称坐标2
- 产品中心(M,N)
再问: 不懂啊
到原始曲线(P,Q)上的任意点是对称于该曲线的中心点(3219米 - 对为2n-q)的应对,那就是:
比索(PA)(PB)(PC)= Q
比索(2M-PA)(2M-PB)(2M-PC)= 2N-Q
上下两方程和消除的Q,后来简化为:
为2n =(PA)(PB)(PC) - (4 - (2M-A))(对 - (2M-B))(对 - (2M-C)) - 中东= P ^ 3-P ^ 2 *(A + B + C)+ P(AB + BC + AC)-abc-
[P ^ 3-P ^ 2 *(2M-A + 2M-B + 2M-C)+ P [(2M-A) (2M-B)+(2M-C)(2M-B)+(2M-A)(2M-C) - (2M-A)(2M-B)(2M-C)]
= P ^ 2 *(6M-2A-2B-2C)+ P(4M(A + B + C)-12m ^ 2)+(2M-A)(2M-B)(2M-C) -abc
因为P,Q是任意的都是真的,所以
6M-2A-2B-2C = 0
4米( A + B + C)-12m ^ 2 = 0
为2n =(2M-A)(2M-B)(2M-C)-abc
因此,M =(A + B + C)/ 3,住宅N =(2B + 2C-A)(2A + 2C-B)(2A + 2B-C)/ 6-ABC /对称坐标2
- 产品中心(M,N)
再问: 不懂啊
已知a,b,c是△abc的三边长,且方程a(1+x²)=2bx-c(1-x²)=0的两根相等,判断三
已知a、b、c是三角形ABC的三边长,且方程a(1+x的平方)+2bx-c(1-x的平方)=0的两根相等 判断此三角形的
已知a,b,c是△ABC的三边长,且方程a(1+x)+2bx-c(1-x)=0有两个相等的实数根,试判断△ABC的形状.
已知a,b,c是△ABC的三边长,且方程a(1+x)²+2bx-c(1-x)²=0有两个相等的实数根
已知abc是三角形abc的三边长,且方程a(1+x²)+2bx-c(1-x²)=0有两个相等的实数根
已知a,b,c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC的形状是:___
已知a,b,c是△ABC的三边长,且方程a(1+x^2)+2bx-c(1-x^2)=0有两个相等的实数根,试
已知a,b,c是△ABC的三边长,且方程a(1+x²)+2bx-c(1-x²)=0有两个相等的实数根
已知关于x的方程(a+c)x2+2bx-(c-a)=0的两根之和为-1,两根之差为1,其中a,b,c是△ABC的三边长.
若a、b、c是△ABC的三边,a+c=2b,且方程a(1-x)+2bx+c(1+x)=0有两个相等的实数根,求sinA+
在△ABC中,a、b、c是△ABC的三边长,且关于x的方程a(1-x²)+c(1+x²)+2bx=0
已知关于X的方程a(1-X^)+2bX+c(1+X^)=0有两个相等的实数根.且A B C是△ABC的三条边长,那么△A