设y=f(x)(x>=0)是严格单调增加的连续函数,f(0)=0,x=h(y)是它的反函数,证明:
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:49:55
设y=f(x)(x>=0)是严格单调增加的连续函数,f(0)=0,x=h(y)是它的反函数,证明:
f(x)0到a的定积分+h(x)0到b的定积分>=ab(a>=0,b>=0)
f(x)0到a的定积分+h(x)0到b的定积分>=ab(a>=0,b>=0)
要证∫(0,a)f(x)dx+∫(0,b)h(x)dx>=ab,(a>=0,b>=0)
只需证∫(0,a)f(x)dx+∫(0,b)h(y)dy>=ab
由已知得y=f(h(y)),x=h(f(x)),y=f(x)>=f(0)=0,h(y)>=h(0)=h(f(0))=0.于是
∫(0,a) f(x)dx+∫(0,b) h(y)dy=∫(0,a) f(x)dx+∫(0,h(b)) h(f(x))df(x)
=∫(0,a) f(x)dx+h(f(x))f(x)|(0,h(b))-∫(0,h(b)) f(x)dh(f(x))
=∫(0,a)f(x)dx+xf(x)|(0,h(b))-∫(0,h(b))f(x)dx
=h(b)f(h(b))+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
=bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
i)当h(b)=a,有∫(0,a)f(x)dx+∫(0,b)h(x)dx=ab
ii)当h(b)bh(b)+f(h(b))[a-h(b)]=bh(b)+b[a-h(b)]=ab
iii)当h(b)>a,bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx=bh(b)-∫(a,0)f(x)dx-∫(0,h(b)) f(x)dx
=bh(b)-∫(a,h(b)) f(x)dx>bh(b)-f(h(b))[h(b)-a]=bh(b)-b[h(b)-a]=ab
因此∫(0,a) f(x)dx+∫(0,b) h(x)dx>=ab,(a>=0,b>=0)命题成立.
【注:紧跟积分符号后面的为积分区间】
只需证∫(0,a)f(x)dx+∫(0,b)h(y)dy>=ab
由已知得y=f(h(y)),x=h(f(x)),y=f(x)>=f(0)=0,h(y)>=h(0)=h(f(0))=0.于是
∫(0,a) f(x)dx+∫(0,b) h(y)dy=∫(0,a) f(x)dx+∫(0,h(b)) h(f(x))df(x)
=∫(0,a) f(x)dx+h(f(x))f(x)|(0,h(b))-∫(0,h(b)) f(x)dh(f(x))
=∫(0,a)f(x)dx+xf(x)|(0,h(b))-∫(0,h(b))f(x)dx
=h(b)f(h(b))+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
=bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
i)当h(b)=a,有∫(0,a)f(x)dx+∫(0,b)h(x)dx=ab
ii)当h(b)bh(b)+f(h(b))[a-h(b)]=bh(b)+b[a-h(b)]=ab
iii)当h(b)>a,bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx=bh(b)-∫(a,0)f(x)dx-∫(0,h(b)) f(x)dx
=bh(b)-∫(a,h(b)) f(x)dx>bh(b)-f(h(b))[h(b)-a]=bh(b)-b[h(b)-a]=ab
因此∫(0,a) f(x)dx+∫(0,b) h(x)dx>=ab,(a>=0,b>=0)命题成立.
【注:紧跟积分符号后面的为积分区间】
设y=f(x)(x>=0)是严格单调增加的连续函数,f(0)=0,x=h(y)是它的反函数,证明:
一道定积分的题目设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0
已知随机变量X分布函数F(x)是严格单调的连续函数,证明 Y=F(x)服从(0,1)上的均匀公布?
设f(x)是单调连续函数,且F'(x)=f(x),求其反函数的不定积分(见图)
设严格单调函数y=f(x)有二阶连续导数,f(0)=0,其反函数x=§(y),且f(1)=1
设y=f(x)是奇函数,并且有反函数.证明:f(x)的反函数也是奇函数
设F(X,Y)是连续函数,则∫(a,0)dx∫(x,0) f(x,y)dy=
设函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1,证明f(x)+f(
设函数y=f(x)是定义在(0,正无穷)上的单调函数,且f(x/y)=f(x)-f(y)
设函数y=f(x)是定义在(0,正无穷大)上的单调函数,且f(x/y)=f(x)-f(y)
设f(x)是[0,1]上单调增加的连续函数,且积分f^2(x)dx>0,求证
关于反函数的问题已知函数y=f(x)是奇函数,当x≥0时,f(x)=3^x-1.设f(x)的反函数是y=g(x),则g(