作业帮 > 数学 > 作业

z,w为复数,证明丨z+w丨小于等于丨z丨+丨w丨

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 18:49:21
z,w为复数,证明丨z+w丨小于等于丨z丨+丨w丨
设z=a+bi w=c+di
z+w=(a+c)+(b+d)i
丨z+w丨=√((a+c)^2+(b+d)^2)
丨z+w丨^2=(a+c)^2+(b+d)^2=a^2+b^2+c^2+d^2+2(ac+bd)
丨z丨+丨w丨=√(a^2+b^2)+√(c^2+d^2)
(丨z丨+丨w丨)^2=a^2+b^2+c^2+d^2+2√((a^2+b^2)(c^2+d^2))
=a^2+b^2+c^2+d^2+2√(a^2c^2+a^2d^2+b^2c^2+b^2d^2)
(ac+bd)^2=a^2c^2+b^2d^2+2abcd
(√(a^2c^2+a^2d^2+b^2c^2+b^2d^2))^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2
a^2d^2+b^2c^2≥2abcd
所以
(丨z丨+丨w丨)^2≥ 丨z+w丨^2
即 丨z+w丨小于等于丨z丨+丨w丨