z,w为复数,证明丨z+w丨小于等于丨z丨+丨w丨
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 18:49:21
z,w为复数,证明丨z+w丨小于等于丨z丨+丨w丨
设z=a+bi w=c+di
z+w=(a+c)+(b+d)i
丨z+w丨=√((a+c)^2+(b+d)^2)
丨z+w丨^2=(a+c)^2+(b+d)^2=a^2+b^2+c^2+d^2+2(ac+bd)
丨z丨+丨w丨=√(a^2+b^2)+√(c^2+d^2)
(丨z丨+丨w丨)^2=a^2+b^2+c^2+d^2+2√((a^2+b^2)(c^2+d^2))
=a^2+b^2+c^2+d^2+2√(a^2c^2+a^2d^2+b^2c^2+b^2d^2)
(ac+bd)^2=a^2c^2+b^2d^2+2abcd
(√(a^2c^2+a^2d^2+b^2c^2+b^2d^2))^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2
a^2d^2+b^2c^2≥2abcd
所以
(丨z丨+丨w丨)^2≥ 丨z+w丨^2
即 丨z+w丨小于等于丨z丨+丨w丨
z+w=(a+c)+(b+d)i
丨z+w丨=√((a+c)^2+(b+d)^2)
丨z+w丨^2=(a+c)^2+(b+d)^2=a^2+b^2+c^2+d^2+2(ac+bd)
丨z丨+丨w丨=√(a^2+b^2)+√(c^2+d^2)
(丨z丨+丨w丨)^2=a^2+b^2+c^2+d^2+2√((a^2+b^2)(c^2+d^2))
=a^2+b^2+c^2+d^2+2√(a^2c^2+a^2d^2+b^2c^2+b^2d^2)
(ac+bd)^2=a^2c^2+b^2d^2+2abcd
(√(a^2c^2+a^2d^2+b^2c^2+b^2d^2))^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2
a^2d^2+b^2c^2≥2abcd
所以
(丨z丨+丨w丨)^2≥ 丨z+w丨^2
即 丨z+w丨小于等于丨z丨+丨w丨
z,w为复数,证明丨z+w丨小于等于丨z丨+丨w丨
Z,W(欧米伽)为复数,(1+3i)Z 为纯虚数,W=Z/(2+i),且丨W丨=5倍根号5,求W
已知z=1+i,设w=z-2丨z丨-4,则w=?
已知z.w 为复数,(1+3i)×z 为纯虚数,w=z/2+i ,且w绝对值等于5√2.求复数w .
解复数求轨迹已知丨Z丨=1求复数W=2Z+3-4i对应点的轨迹
已知z,w为复数 (1+3i)z为实数 ,w=z/(2+i) ,且|w|=5根号2 则复数 w=
已知复数w满足1+w=(3-2w)i (i为虚数单位),Z=w绝对值的平方-w,求复数Z
Z为虚数,W=Z+16/Z -2
love Z .Q .W
复数轨迹问题已知复数w=(z-1-i)/(z+1+i) 复数z离圆心距离始终为1.求复数w的轨迹
已知虚数z,丨z丨=根号2,且z² + 2(z的共轭复数) 为实数.求虚数z的值
复数z满足w+4i=2+iw,z=10/w+|w-3|,求以z为根的实系数一元二次方程