初中代数证明题,利用比例中的合分比定理
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 02:19:33
初中代数证明题,利用比例中的合分比定理
向各位初中师生大虾求助一道初中代数证明题,
已知a=b+c+1;d=e+f+1;g=h+i+1;
求证:(d-a)/(d-g)=(e-b)/(e-h)=(f-c)/(f-i)
应该是利用比例中的合分比定理.
读了这么多年书,最后把初中数学都忘光了,急用,
网友推荐答案为:
设 kA=iB+jC+1;另设
a=b+c+1->k1A=i1B+j1C+1
d=e+f+1->k2A=i2B+j2C+1
g=h+i+1->k3A=i3B+j3C+1.(1、2、3为脚标)
分别代入,有(d-a)/(d-g)=(k2-k1)A/(k2-k3)A=(k2-k1)/(k2-k3)
同理可得,(e-b)/(e-h)=(f-c)/(f-i)=(k2-k1)/(k2-k3)
得证.
但是存在疑问:(e-b)/(e-h)不是应该等于(i2-i1)/(i2-i3)吗?怎么变成等于(k2-k1)/(k2-k3)了?
向各位初中师生大虾求助一道初中代数证明题,
已知a=b+c+1;d=e+f+1;g=h+i+1;
求证:(d-a)/(d-g)=(e-b)/(e-h)=(f-c)/(f-i)
应该是利用比例中的合分比定理.
读了这么多年书,最后把初中数学都忘光了,急用,
网友推荐答案为:
设 kA=iB+jC+1;另设
a=b+c+1->k1A=i1B+j1C+1
d=e+f+1->k2A=i2B+j2C+1
g=h+i+1->k3A=i3B+j3C+1.(1、2、3为脚标)
分别代入,有(d-a)/(d-g)=(k2-k1)A/(k2-k3)A=(k2-k1)/(k2-k3)
同理可得,(e-b)/(e-h)=(f-c)/(f-i)=(k2-k1)/(k2-k3)
得证.
但是存在疑问:(e-b)/(e-h)不是应该等于(i2-i1)/(i2-i3)吗?怎么变成等于(k2-k1)/(k2-k3)了?
证明:(d-a)/(d-g)=[(e+f+1)-(b+c+1)]/[(e+f+1)-(h+i+1)]
=[(e-b)+(f-c)]/[(e-h)+(f-i)]
由合比定理(a/b=c/d==>a/b=(a+c)/(b+d))得
(d-a)/(d-g)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]
设上式值为m,
即(d-a)/(d-g)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]=m
同理:(f=d-e-1;c=a-b-1;i=g-h-1)
(f-c)/(f-i)=[(d-e-1)-(a-b-1)]/[(d-e-1)-(g-h-1)]
=[(d-a)+(e-b)]/[(d-g)+(e-h)]
再利用合比定理
(f-c)/(f-i)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]=m
同理可证(e-b)/(e-h)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]=m
故:(d-a)/(d-g)=(e-b)/(e-h)=(f-c)/(f-i)
=[(e-b)+(f-c)]/[(e-h)+(f-i)]
由合比定理(a/b=c/d==>a/b=(a+c)/(b+d))得
(d-a)/(d-g)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]
设上式值为m,
即(d-a)/(d-g)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]=m
同理:(f=d-e-1;c=a-b-1;i=g-h-1)
(f-c)/(f-i)=[(d-e-1)-(a-b-1)]/[(d-e-1)-(g-h-1)]
=[(d-a)+(e-b)]/[(d-g)+(e-h)]
再利用合比定理
(f-c)/(f-i)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]=m
同理可证(e-b)/(e-h)=[(d-a)+(e-b)+(f-c)]/[(d-g)+(e-h)+(f-i)]=m
故:(d-a)/(d-g)=(e-b)/(e-h)=(f-c)/(f-i)