双曲线16x^2-9y^2=144的左、右焦点分别为F1、F2,点P在双曲线上,且|pF1|*|PF2|=64,求△F1
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:57:18
双曲线16x^2-9y^2=144的左、右焦点分别为F1、F2,点P在双曲线上,且|pF1|*|PF2|=64,求△F1PF2的面积.
x²/9-y²/16=1
a²=9,b²=16
c²=9+16=25
所以2a=6
2c=10
令PF1=m,PF2=n
则由双曲线定义|m-n|=2a=6
平方
m²-2mn+n²=36
mn=64
所以m²+n²=164
F1F2=2c=10
由余弦定理
cosF1PF2=(m²+n²-F1F2²)/2mn=1/2
所以sinF1PF2=√3/2
所以面积S=1/2mn*sinF1PF2=16√3
a²=9,b²=16
c²=9+16=25
所以2a=6
2c=10
令PF1=m,PF2=n
则由双曲线定义|m-n|=2a=6
平方
m²-2mn+n²=36
mn=64
所以m²+n²=164
F1F2=2c=10
由余弦定理
cosF1PF2=(m²+n²-F1F2²)/2mn=1/2
所以sinF1PF2=√3/2
所以面积S=1/2mn*sinF1PF2=16√3
双曲线16x^2-9y^2=144的左、右焦点分别为F1、F2,点P在双曲线上,且|pF1|*|PF2|=64,求△F1
已知F1,F2是双曲线x^2/9-y^2/16=1的左、右焦点,点P在双曲线上,且|PF1 |*|PF2|=32 ,求∠
已知双曲线x方/9-y方/16=1的左、右焦点分别为F1,F2,点在双曲线上的左支上且|PF1|·|PF2|=32,求角
已知双曲线方程x^2/9-y^2/16=1的两个焦点分别为F1,F2,点P在双曲线上,且PF1垂直于PF2,求P至x轴的
解析几何双曲线问题双曲线16x²-9y²=144的左,右焦点分别为F1,F2,点P在双曲线上,且∠F
已知双曲线x^2-y^2=1,F1,F2分别为焦点.点p为双曲线上的一点,PF1垂直于PF2,则PF1+PF2=
已知双曲线x^2/9-y^2/16=1的两个焦点分别为F1,F2,点P在双曲线上,且|PF1|X|PF2|=32,求角F
双曲线的左,右焦点为F1,F2,点P在双曲线的右支上,且PF1=4PF2,求双曲线离心率e的最大值
已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,P为双曲线右支上一点,且|PF2|=|F1F2|,则
已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=32求角P1PF2
已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=3求角P1PF2
设F1、F2分别是双曲线x²-y²/9=1的左、右焦点,若点P在双曲线上,且向量PF1*向量PF2=