作业帮 > 数学 > 作业

设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 12:21:43
设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点
设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线右支上的一点,△PF1F2的内切圆与x轴切于点Q(1,0),且|F1Q|=4,求双曲线的方程.
设内切圆与PF1切于A,与PF2切于B,则|PA|=|PB|,|F1A|=|F1Q|,|F2B|=|F2Q|
因为|F1Q|=|F1O|+|OQ|,所以|F1O|=|F1Q|-|OQ|=4-1=3,即c=3,从而|F2Q|=2
又|PF1|-|PF2|=2a
即(|PA|+|F1A|)-(|PB|+|F2B|)=2a
|F1Q|-|F2Q|=2a
4-2=2a,a=1
所以 b²=c²-a²=8
双曲线的方程为x² -y²/8=1