若函数f(x)满足limf(x)/x^3=1/6,x趋近于无穷,且具有一阶到四阶导数,则f'''(0)=
若函数f(x)满足limf(x)/x^3=1/6,x趋近于无穷,且具有一阶到四阶导数,则f'''(0)=
证明:当x趋近于正无穷,x趋近于负无穷是,函数f(x)的极限都存在且等于A,则limf(x)=A的充要条件.(x趋近
高数极限 判断题:limf(x)=A limg(x)=B (两个函数都是趋近于无穷) ,且f(x)>g(x) ,则A>B
高数极限高手进 判断题:limf(x)=A limg(x)=B (两个函数都是趋近于无穷) ,且f(x)>g(x) ,则
高等数学问题已知函数f(x)在(-∞,+∞)内具有二阶导数,且limf(x)/x=1,f''(x)>0,证明:f(x)>
设函数f(x)具有连续导数,且当x趋近于0时极限[F(x)/x+ln(1+x)/x^2]=3/2求f(0)和在0处的导数
设f(x)在x=1处具有连续导数,且f ‘(1)=3,求f '(cos√x),x趋近于0+
设函数f(x)具有一阶连续导数 且f(0)=0 若曲线积分∫[f(x)-e^x]sinydx-f(x)cosydy与路径
若函数f(x)在负无穷到正无穷内满足f(x)的导数=f(x),且f(0)=1,则f(x)=e的x次方
若f(x)在x=0处连续,且当x趋近于0时,limf(x)/x 存在,证明f(x)在x=0处可导.
设函数f(x)具有连续一阶导数,且满足f(x)=∫(上限是x下限是0)(x^2-t^2)f^,(t)dt+x^2求f(x
若函数f(x).g(x)满足f(x)-g(x)的x趋近于无穷的极限是0