一个自然数a恰好等于另一个自然数b的平方,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:24:58
一个自然数a恰好是另一个自己数的平方,则称自然数a为完全平方数(如64=8的2平方,则64是完全平方数),若a

a=2001^2+(2001^2)*(2002^2)+2002^2【先添加两项:-2*2001*2002+2*2001*2002】=2001^2+2002^2-2*2001*2002+2*2001*2

一个正整数a恰好等于另一个正整数b的平方.若a=2992^2+2992^2*2993^2+2993^2,求证:a是一个完

a=2992^2+2992^2*2993^2+2993^2=2992^2-2*2992*2993+2993^2+2*2992*2993+2992^2*2993^2=(2992-2993)^2+2*29

一个自然数a恰好是另一个自然数b的平方,则称自然数a为完全平方数,如64=82,64就是一个完全平方数.已知a=2001

你保证是a=2001²+20012*20022+2002²吗..如果20012*20022换成2001*2*2002的话就是一个完全平方的公式.(a+b)²=a²

一个自然数a恰好等于另一个自然数b的平方,则称自然数a为完全平方数,已知a=2006^2+2006^2*2007^2+2

证明,因为a=2006^2+2006^2×2007^2+2007^2=2006^2×2007^2+2006^2+(2006+1)^2=(2006×2007)^2+2006^2+2006^2+2×200

一个自然数a若恰好等于另一个自然数b的平方,则称自然数a为完全平方数.已知a=2002²+2002²

a=2002^2+2002^2×2003^2+2003^2=2002^2+2002^2×(2002+1)^2+(2002+1)^2=2002^2+2002^2×(2002^2+2×2002+1)+20

一个自然数a恰等于另一个自然数b的平方,数a为完全平方数.求证:a是一个完全平方数.

a=1995^2+1995^2×1996^2+1996^2=1995^2×1996^2+1995^2+(1995+1)^2=(1995×1996)^2+1995^2+1995^2+2×1995+1=(

一个自然数a若恰好等于另一个自然数b的平方,则称自然数a为完全平方数.如64=8&sup

a=2001²+2001²×2001²+2001²=2c+c*c(c=2001)所以a不是完全平方数若a=2001²+2001²×2001&

一个自然数a恰好等于另一个自然数b的平方,则称自然数a为完全平方数

晕,这个有公式的(a+b)=a^2+2ab+b^2设x=2001,y=2002,则原式a=x^2+x*y*2+y^2=(x+y)^2=4003^2所以a是完全平方数好像看错题了,修改后的回答:因为20

一个自然数a恰好是另一个自然数b的平方,则称自然数a为完全平方数.

设x=2001则有:a=x²+x²(x+1)²+(x+1)²=x²+(x²+x)²+x²+2x+1=(x²+x

一个自然数a若恰好等于另一个自然数b的平方,则称a为完全平方数.如64=8^2,64为完全平方数.已知a=2001^2+

设2001=X所以a=x^2+x^2(x+1)^2+(x+1)^2=x^4+2x^3+3x^2+2x+1=(x^2+x+1)^2所以a是一个完全平方数

一个自然数a若恰好等于另一个自然数b的平方,则称自然数a为完全平方数.已知a=2001²+2001²

题目不对,是a=2001²+2001²×2002²+2002²吧?令A=2001,A+1=2002a=2001²+2001²×2002&su

阅读下列材料:一个自然数a恰好等于另一个自然数b的平方,则称自然数a为完全平方数.已知a=20042+20042×200

设x=2004,则2005=2004+1=x+1,故有:a=x2+x2(x+1)2+(x+1)2,=x2-2x(x+1)+(x+1)2+2x(x+1)+x2(x+1)2,=[x-(x+1)]2+2x(

若一个自然数a恰好等于另一个自然数b的平方,则称自然数a为完全平方数,已知a=2013^2+2013^2*2014^2+

a=2014+2014×2015+2015=2014×[1+(2014+1)]+2015=2014×(2014+2×2015)+2015=(2014)++2×2014×*2015+2015=(2014

1.一个自然数A恰好是另一个自然数B的平方,则称自然数A为完全平方数,如64=8^2,则就是一个完全平方数,若A=200

12006*2006*2007*2007=A=(2006*2007)^22p和q分别是97和2(还要解释么,>2的偶数都不是质数,奇数和奇数的和为偶数,所以只有这种可能)19432*(1-2-3-4-

一个自然数a恰好等于一个自然数b的平方,a=2011的平方+2011的平方*2012的平方+2012的平方

把2011^2分解为2012*2011-2011把2012^2分解为2011*2012+2012然后重新合并:a=2011^2+2012^2×2011^2+2012^2=2012*2011-2011+

若一个自然数a恰好等于另一个自然数b的平方,则称a是完全平方数.例如16=4的平方,就称16是一个完全平方数.

1n^2+n^2(n+1)^2+(n+1)^2=n^2(n+1)^2+2n^2+2n+1=[n(n+1)]^2+2(n+1)n+1=(n^2+n+1)^22与1同理可以化2008为n,2009为n+1

一个非零的自然数a,若它恰好是另一个自然数b的平方,则称自然数a的完全平方数,已知:

把2011^2分解为2012*2011-2011把2012^2分解为2011*2012+2012然后重新合并:M=2011^2+2012^2×2011^2+2012^2=2012*2011-2011+

一个自然数a恰好是另一个自然数的平方,则自然数a为完全平方数(如64=8^2,…看问题补充.

记b=2002,2003=b+1,则a=b^2+b^2*(b+1)^2+(b+1)^2=b^2+b^2(b^2+2b+1)+(b^2+2b+1)=b^4+2b^3+3b^2+2b+1=(b^2+b+1