一个递增函数在x趋于正无穷时函数一定大于零吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:47:14
令t=1/x,则x=1/t,x→∞时,t→0lim(x→∞)xsin(1/x)=lim(t→0)(1/t)sint.(这就是两个重要极限之一)=1
f′(x)=3x²+4x+m=3(x+2/3)²+m-4/3;∵在区间(负无穷,正无穷)单调递增∴f′(x)>0恒成立;∵(x+3/2)²≥0;∴m-4/3>0;∴m>4
设lim{x->∞}f(x)=A由极限保号性可知存在X>0,当|x|>X时,|f(x)|
y=ax三次方-x平方+x-5在负无穷到正无穷上单调递增说明它的导数y'=3ax^2-2x+1>0要使这个不等式成立,则要使二次函数y=3ax^2-2x+1与X轴没有交点,所以函数图象开口向上,且△<
因为f(x)在正无穷和负无穷上是减函数,要求单调递增区间就是求2x-x^2的递减区间,所以可以求得2x-x^2的递减区间是[1,+∞).再问:怎么求的???过程、、、、再答:我写的基本就是过程了,这样
证明:x趋于正无穷时,f(x)存在,故存在b,b>a.当x》b时,|f(x)|《M1又y=f(x)在[a,正无穷]上连续,当然在[a,b]上连续,故当x在区间[a,b]时,|f(x)|《M2所以:|f
题目是y=x+2/x吧,任取x1,x2属于【根号2,正无穷大)且x1
不放心的话,给分子添个负号好了,然后极限式外面再添个负号.
y=arctanx反正切函数单调增在x趋于正无穷时候趋于pi/2(pi≈3.14)
作一个满足条件(0,正)上为增函数,且f(1)=0,特殊的函数:f(x)=x-1(x>0),再依照得到:f(x)=x+1(x0,则f(x)
这样的函数应该是有的,我记得曾经在一个论坛里见过有人构造过这样一个函数f(x)=sin(2nπx)/n式中n=1,2,3,……,x∈(n-1,n],可以证明下这个函数应该是连续的,而且倒数也是连续的.
用两种方法:1.用导数,f'(x)=2x+2,在(0,正无穷)上f'(x)>0所以f(x)在(0,正无穷)上单调递增2.用定义法:令x1
不一定举例说明:设f(x)=1+(1/x),满足当x趋于正无穷时,limf(x)=1,且在(0,正无穷)上连续,但是在x=0点函数无界.因为当x趋于0+时,limf(x)=正无穷,所以函数无界.说明:
不能,因为你必须保证f(x)连续才行.举例,当2==0,在2~正无穷上恒成立,但f(x)不是单调递增的.
1.(1)函数f(x)的定义域为[0,正无穷]则,log以2为底x的对数>0,解得x>1即函数f(log以2为底x的对数)的定义域为(1,正无穷)(2)f(x)在[0,正无穷]上单调递增,且f(2)=
x+5≥0x≥-5所以y=f(x+5)的递增区间[-5,正无穷)
∵lim(x->+∞){[√(x+1)-√(x-1)]/2}=lim(x->+∞){[(x+1)-(x-1)]/[2(√(x+1)+√(x-1))]}(分子有理化)=lim(x->+∞){1/[√(x
由题知,f(x)=(x²-2x)e^kx在(-∞,-√2]和[√2,+∞)上递增,在[-√2,√2]上递减.(1)对f(x)求导得f'(x)=(2x-2)e^(kx)+(x²-2x