三个正态分布函数相互独立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:14:55
不相容那么AB无交集但独立AB是有交集的ABC两两独立那么P(AB)=P(A)(B)P(AC)=P(A)(C)P(BC)=P(B)(C)P(ABC)不等于P(A)P(B)P(C)ABC相互独立则P(A
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z
x,y独立,正态分布.那么x,y的和差运算仍然是正态分布.E(4X+3Y)=4E(x)+3E(y)=0D(4x+3y)=16D(x)+9D(y)=25因此4X+3Y~N(0,25)同理3X-4Y~N(
P[(A+B)*C]=P(AC+BC)=P(AC)+P(BC)-P(AC*BC)=P(AC)+P(BC)-P(ABC)=P(A)*P(C)+P(B)*P(C)-P(A)*P(B)*P(C)=[P(A)
1/(PI)^O.5
随极变量X,Y相互独立-->X,Y不相Z=XY-->E{Z}=E{XY}=E{X}E{Y}D(XY)=E{(Z-E(Z))^2}=E{Z^2}-E{Z}E{Z}=E{X^2}E{Y^2}-E{X}E{
为了方便令F(X1)=ф(X(1)))F(X1)=1-(1-F(X1))^nf(x1)=n*((1-F(x1))^(n-1))*F'(x1)E=ф(X(1)))*f(x1)从负无穷到正无穷的积分积分符
FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z
f(x)=[(50pi)^(-1/2)]e^(-x^2)f(y)=[(50pi)^(-1/2)]e^(-y^2)f(x,y)=f(x)f(y)X与Y相互独立.再问:这样好像不对吧,有解题过程吗?再答:
Cov(X1+X2,X1-X2)=Var(X1)-Cov(X1,X2)+Cov(X1,X2)-Var(X2)=Var(X1)-Var(X2)=0所以X1+X2和X1-X2不相关.如果(X1,X2)的联
所给题中ξ服从标准正态分布,均值miu为0,方差sigma为1,根据正态分布性质有:P{1
我个人认为你的题目是不是写错了?是否是U=X+Y,V=X-即使是如此,两者独立也仅在X,Y同方差的情况下成立的样子.因为,对于正态分布来说,独立等价于不相关,也就是说二者的协方差cov(U,V)=0(
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
1250mm=μ+2.5σ年降雨量不超过1250mm的的概率是P1=Φ(2.5)=0.9938年降雨量超过1250mm的的概率是P2=1-Φ(2.5)=0.0062从今年起连续10年内有9年降雨量不超
因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)
1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+
是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).
两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数