(3n-1) (2n 1)求極限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:58:33
猜想:f(n)=2^n用Cauchy法证明:首先对于正整数n有f(n)=f(1)^n=2^nf(0)=f(0)^2,则f(0)=0或1若f(0)=0则f(n)=f(n+0)=f(n)f(0)=0与f(
你是通过f=0解出ns和k0的关系么?把其他参数的数值给出来吧.再问:呃,错了,有值的n1=1.509n2=1.454n=0b=0.52ns取值1.4--1.6再答:n1=1.509;n2=1.454
f1=2,f2=f(1+1)=f1*f1=2*2=4f(n+1)=fn*f1=2fn即f(n+1)/f(n)=2,可以得出fn=2^n(n属于n+)再问:如何证明再答:很容易证明啊,根据已知条件有:f
(A-ε,A+ε)与(B-ε,B+ε)分别是A,B的ε领域,如果A不等于B,那么肯定当ε足够小的时候是不相交的.那么xn就不可能同时存在于这两个集合.
T(n+1)=C(2n,n)*x^n=(2n)!*x^n/(n!×n!)=2×4×6×...×2n×1×3×5×...×(2n-1)*x^n/(n!×n!)=2^n*(1×2×3...×n)×1×3×
我用C语言可以吗?(在VC里可以运行C)算法的思想是:longcifang(int,int)intmain(void){inti,n;longsum;for(n=1;n
其实差别也不算大,因为以前日语考试是4个级别的.现在变成5个级别了,N1把原来的一级水平的难度往上提升了一点,因此比起以前来现在的N1与N2的差距就变大了.同时无形当中N1与N2也是专不专业的重要标志
∵f(1)=3,对于任意的n1,n2∈N*,f(n1+n2)=f(n1)f(n2).∴f(2)=f(1+1)=f(1)f(1)=3^2=9,f(3)=f(2+1)=f(2)f(1)=3^2×3=3^3
可加Q群:27896931或223817400
f(n)=2^nf(n)=f(n-1)*f(1)=f(n-2)*f(1)*f(1)=f(1)*f(1)*……*f(1)一共有n个=【f(1)】^n=2^n
求向量的叉乘,可用行列式法则n=|ijk|用代数余子式展开,i,j,k代表方向|1,-1,1||3,2,-12|
要证明6|(n^3+n1^3+n2.nk^3),可以分为两步:1.证明(n^3+n1^3+n2.nk^3)是偶数对任意的一个整数x,与x^3同为奇数或同为偶数所以n+n1+n2+.nk与n^3+n1^
不知道你什么背景,这题用积分算比较简单原式左边等于积分(从0到1){(1-(1-x)^n)/x}dx……验证里面的展开式做变量替换t=1-x,上式化为积分(从0到1){-(1-t^n)/(1-t)}d
提示哪里就是哪里出错了你调用函数fft1没有往里面传递m但是你函数里面用到m了m没定义再问:那怎么加到里面啊???再答:这函数你写的我怎么知道怎么加到里面如果不是你写的看是不是抄错了,或者把m换成n试
由于方程组是非齐次的它的解等于它本身的一个解加上它的齐次方程组的解它的齐次方程组的解直接用n2-n3就得到了也就是(1,6,-1)T
再问:为什么等于(1+2)^n过程详细点谢谢再答:
(n1²+n2²+n3²+……+nk²)k≥(n1+n2+n3+……+nk)²【柯西不等式】【或均值不等式】得(n1²+n2²+…
N,N1,N2,N3,为天数,最少1天,最多500天,缺省为系统默认值.
f(0+0)=f(0)f(0)f(0)=1f(1+11)=f(1)*f(1)f(2)=4f(3)=f(1+2)=2*4=8同理f(4)=16(2)猜测f(n)=2的n次方根据f(1)=2.成立令f(n