三角形ABC中,以AB为直径的圆O交AC于点E,D是弧AE上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:52:44
也是用勾股定理再问:嗯再答:等一等,我写过程给你再问:嗯嗯再答: 再答:望采纳😊
连接od,oe三角形obd,oce三边相等,是全等三角形由此可知角abc等于角acb三角形abc是等腰三角形,ab=ac
半圆半径为R1/2兀*R^2=9/2兀R^2=9R=3AB=2R=6BC为边的正方形为16BC^2=16BC=4AC^2=2^2*13=52BC^2=16AB^2=6^2=36BC^2+AB^2=52
连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC
由勾股定理知,AB平方=AC平方+BC平方=12平方+5平方=169.以AB为直径的半圆面积是:169派/8.
这样做,过A作一条平行于BC的线,然后延长CE交刚才所作的平行线于G.因为:AB为直径的半圆交BC于点D,所以AD⊥BD.又AB=AC.所以BD=DC在△GAE和△CBE中.AE=1/3AB,所以AE
很高兴为您解答!如果您满意我的回答,请点击下方的“采纳为满意回答”按钮.如果有其他的问题可以继续追问,您也可以向我们的团队<土豆>求助.
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
(1)∵∠A=60°,AB=AC, ∴△ABC为等边三角形, ∴∠B=∠C=60°;又∵OB=OD,OE=OC; ∴△BO
三角形为直角三角形AC=4,BC=3根据勾股定理AB=5又因为以斜边ab为直径作半圆直径为AB=5所以半圆面积S=(1/2)πr^2=(1/2)π×(5/2)^2=25π/8
1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A
﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中
(1)连接AE.则在半圆O中,AC是直径,那么角AEC=90度、ADC=90度;也就是说AE垂直BC因为AB=AC在等腰三角形ABC中,底边上的高也是底边的中垂线所以E是BC的中点.(2)直角三角形A
∵BD=CE∴弧bd=弧ce∴弧bde=弧ced∴∠B=∠C∴AB=AC同圆或等圆中,弦相等,对应的圆心角相等,弧相等,圆周角相等弧BD=弧CE加上公共弧DE就得到弧BDE=弧CED同弧所对圆周角相等
第一问,连接AD,得角BDA=90度,又三角形ABC为等腰三角形,根据三线合一得AD平分BC,D为BC中点;第二问:DE为圆的切线理由如下:连接DO,DO为三角形ABC的中位线,DO与AC平行,角DE
4.5π(π为圆周率)
以AC为直径的半圆面积:(1/2×AC)²π÷2=1/8π×AC²以BC为直径的半圆面积:1/8π×BC²相加的1/4π×(AC²+BC²)直角三角形
证明:(1)连接DE、DF依题意可知,CD、EF为圆O的直径.有:∠ECF=∠CFD=∠FDE=∠DEF=90°且有CD=EF所以四边形ECFD为矩形,有DF=EC∠DFB=∠ECF=90°有因为点D
如图,因为AB为直径,所以角ADC等于90°(圆周角所对的弦为直径),所以要想两个三角形全等,则加AB=AC或者角B=角C其中一个条件即可
由于是直角三角形并且已知两边长,并且角C为90°可以得到AB=13.13²=12²+5².那么圆的直径为13,半径为6.5.半圆的面积为π×6.5²÷2=66.